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ABSTRACT 

This report  describes the  work and r e s u l t s  on a learning program f o r  

t he  numerical in tegra t ion  of systems of ordinary d i f f e r e n t i a l  equations, 

(This i s  a continuation of work described i n  Gallaher, L. J., e t  al, 

"Study of the  Methods f o r  the  Numerical Solution of Ordinary Di f f e ren t i a l  

Equations, " Fina l  Report Project A-831, Contract NAs8-20014, Engineering 

Experiment Station, Georgia I n s t i t u t e  of Technology, Atlanta, Georgia, 

(1967) * 1 
The computer program was designed to incorporate t h e  following features: 

a)  meet a user specif ied accuracy, b) 

number or degree of coupled d i f f e r e n t i a l  equations), e )  be self optimizing 

with respect to s t ep  s ize ,  order and integrat ion methods used, d) exhibi t  

learning so as t o  use a Pas t  performance h is tory  t o  determine methods and 

orders t o  be used. 

be problem independent (i.e. any 

The in tegra t ion  methods used are: a)  the  method of A d a s ,  Bashforth 

and Moulton, b)  

e )  

Runge -Kutta method. 

Butcher's formulas for the  Stetter-Gragg-Butcher method, 

Cowell's method of Nth order differences,  d )  Shank's formulas f o r  t he  

The programs described here are wr i t ten  i n  both s ingle  (11 decimal 

place) and double (22 decimal place) precision Algol f o r  the B-5500. 

A n  executive procedure a c t s  i n  an administrative and bookkeeping capacity 

for the  various integra$ion methods. This executive procedure keeps the  

performance h i s t o r i e s  according t o  problem types, determines performance 

effectiveness of t he  methods and orders, and chooses those to be used, 

Several  kinds of problems and a large range of accuracies were used 

t o  exercise the  program with the following r e su l t s :  

iii 



A l l  methods perform wel l  with no method or order always being 

exceptionally superior t o  the  others.  

For d i f f e ren t  kinds of problems and accuracies d i f f e ren t  methods and 

orders prove more e f fec t ive  e 

Learning takes  place i n  a sa t i s f ac to ry  manner. 

The program makes an e f fec t ive  general l i b r a r y  procedure f o r  in tegra t ing  

systems o f  ordinary d i f f e r e n t i a l  equations e 

i v  
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I. INTRODUCTION 

The goal  was s e t  o f  wri t ing a computer program f o r  the  in tegra t ion  

of systems of ordinary d i f f e r e n t i a l  equations ( i n i t i a l  value problems) , 
characterized by the  following spec i f ica t ions :  

a )  

b) 

The in tegra t ion  must meet a (user ' s )  specified accuracy. 

The procedure w i l l  be problem independent and applicable t o  

the in tegra t ion  of any degree o r  number of  coupled d i f f e r e n t i a l  equations. 

e )  The s t e p  s ize ,  order, and method of integrat ion a re  t o  be 

chosen by the  procedure so as t o  be optimum; t h a t  i s ,  t o  minimize the  

computation time while meeting the  accuracy requirements. 

d )  The procedure w i l l  have bu i l t - i n  learning s o  t h a t  it can use 

i t s  experience from one c a l l  t o  t he  next t o  decide on the  method and 

order t o  be used. The procedure w i l l  be self-modifying. 

I n  previous work under t h i s  contract  [ll, 21 1 a program attempting 

t o  meet these spec i f ica t ions  was wr i t t en  i n  single-precision (11 decimal 

place) B-5500 ALGOL. Evaluation of t h i s  program indicated a high degree 

of success and encouraged fu r the r  work along t h i s  l i n e .  This report  

describes the extensions and improvements i n  t h i s  program and fu r the r  

evaluation of t he  effect iveness  of t h i s  approach t o  in tegra t ing  d i f f e r e n t i a l  

equations . 
Several major extensions and some minor changes were made i n  the  

program described i n  [21 1. 

c la s s i f i ca t ion  by the program and the  maintenance of separate h i s to r i e s  

fo r  each problem type. 

precis ion ar i thmetic  (22 decimal places) .  

use of higher-order methods a t  smaller e r ro r  tolerances.  Both s ingle  and 

1 

One change was the introduction of problem 

Another was the  extension of the  program t o  double- 

This made possible  the  e f f ec t ive  



double-precision programs a re  described here 

The methods used a r e  a s  follows: 

(1) The Adams -Bashforth-Moulton method, 

(2) The Stetter-Gragg-Butcher method, 

( 3 )  

(4) The Runge-Kutta-Shanks method. 

Cowell's method of constant Rth order differences,  

With each of these methods, four d i f f e ren t  orders a r e  used. A 

his tory f i l e  i s  kept showing the  past  performance scores of each method 

and order by problem type and is  used t o  se l ec t  which methods and orders 

a re  t o  be employed. 

The program works i n  the following way. When a c a l l  i s  made on 

t h e  integrat ion procedure, t he  f i r s t  pa r t  of the in t e rva l  i s  integrated by 

one method fo r  each of two d i f fe ren t  orders, and the  times taken by each 

recorded. A second pa r t  i s  integrated by another method, a l s o  f o r  two 

d i f fe ren t  orders, and the times recorded. The winners then compete against  

each other over another pa r t  o f  the in te rva l .  That is ,  t he  f a s t e r  order 

of the  f i r s t  method and the f a s t e r  order of the second method are  both 

used t o  integrate  the  next pa r t  of the interval ,  and the  times taken by 

each recorded. The f a s t e r  method of these two i s  then presumably the bes t  

( f a s t e s t )  of the  four t r i ed ,  and it i s  used alone t o  integrate  over t he  

f i n a l  portion of the  in te rva l .  

logged i n  a cumulative his tory file,.  according t o  problem type with t h e  

winners and losers  noted. 

All of the times measured above are  then 

These his tory f i i e s  a re  used as  the basis  for se lec t ing  which methods 

and orders are  chosen each time. 

The f i r s t  of the two methods is  chosen a t  random (using a random 

The number generator) from among the  three most e f fec t ive  available.  

second method i s  chosen t o  be the  method showing the best  his tory of success 

2 



among t h e  other  methods, with the cumulative h is tory  f i l e  f o r  t h a t  problem 

type used t o  determine the  degree of success. 

t he  same kind of se lec t ion  process with respect t o  orders i s  used. Thal; 

is, the f irst  order i s  chosen a t  random from the  three most ef fec t ive  

and t h e  second order is  chosen on the  basis of which of the  others has 

been the  most successful  ( f a s t e s t  running) order of t ha t  method. Thus 

it i s  seen tbt the  pas t  performance of the d i f f e ren t  methods and orders 

influences t h e  choice of which a re  allowed t o  compete, such that the  more 

successful have a higher probabi l i ty  of being selected.  

Then within each method 

I n  using time as the  so le  estimate of performance efficiency, it i s  

assumed t h a t  a l l  orders and rcethods have s a t i s f a c t o r i l y  met t he  accuracy 

requirements. The accuracy requirements of each method are  m e t  by 

cont ro l l ing  s t ep  s i ze  and making e r ro r  estimates a t  each s tep.  The method 

of e r r o r  estimate is  d' ifferent f o r  the d i f f e ren t  methods. I n  the  Runge-Kutta 

s ingle  s t e p  method, t h e  error is  estimated by taking two half  s teps  and 

then a whole s tep .  

between predictor  and corrector  i s  used. 

formula i s  used. 

I n  the  Adams and Butcher methods the  difference 

In  the  Cowell method a mid-range 

One fur ther  feature  introduced in to  the  learning process i s  the  

gradual "forgett ing" of events i n  t h e  more d i s t a n t  past .  This causes 

t h e  events i n  the d i s t an t  past  t o  have l e s s  influence than those more 

recent i n  determining the  score or performance f igure  of an order and 

method. 

Three types of problems were used t o  exercise the in tegra t ion  

procedures: 

F i r s t ,  t he  Arenstorf type o rb i t s  of t he  r e s t r i c t ed  three-body 

problem (four equations). 

3 



Second, t he  system of l i n e a r  d i f f e r e n t i a l  equations associated 

with the  Fourier transforms (20 t o  40 equations). 

Third, the  system of l i n e a r  d i f f e r e n t i a l  equations obtained 

from a d i sc re t i za t ion  of the  p a r t i a l  d i f f e r e n t i a l  equation f o r  t he  

v ibra t ing  s t r i n g  (50 t o  100, equations). 

The f i r s t  of these is  characterized by the  necessity of frequent step- 

s i z e  change. The other two have no need for step-size change once the  

correct  s t e p  is  found. 

Results of running with a var ie ty  of accuracies and problems 

mentioned above show t h a t  no pa r t i cu la r  method i s  exceptionally superior 

t o  any other.  

types, d i f f e ren t  methods show up more successfully. For example, the 

Range-Kutta method was most successful a t  l a rge  e r r o r  tolerances where 

frequent s t ep  s i z e  changes were required, but the  multistep methods 

performed b e t t e r  where long runs of uniform s t ep  s i z e  were appropriate 

and f o r  small error tolerances.  

All methods performed well  and, f o r  d i f f e r e n t  problem 

For accuracies obtainable i n  single precision the  lower orders were 

more effect ive and, a t  t he  high accuracies (small e r r o r  tolerances)  

obtainable i n  double precis ion,  the higher orders were more e f fec t ive .  

For a given accuracy one pa r t i cu la r  method and order usually dominated, 

but which one depended on the accuracy asked and on the  problem type. 

The r e s u l t s  j u s t i f y  the  conclusion tkat the present program would 

be su i tab le  and e f f ec t ive  a s  general l i b r a r y  programs f o r  in tegra t ing  

systems o f  d i f f e r e n t i a l  equations. 

4 



I1 * INTEGF&TION METHODS 

A.  The Method of Adams Bashforth and Moulton -I 

1. Description of the  Method 

The method invest igated cons is t s  o f  t h e  combination of two d i f fe ren t  

versions o f  t he  method of Adams in to  a predictor-corrector system [SI .  The 

use of t h i s  system t o  obtain numerical solutions t o  a set o f  simultaneous 

d i f f e r e n t i a l  equations w i t h  given i n i t i a l  conditions i s  independent both of  

the  number of equations i n  the s e t  t o  be solved and of t he  orders of the  

individual equations i n  the  se t ;  provided, however, t h a t  each equation of  

order rn i s  expressed as a s e t  o f  m coupled f i r s t  o rde r  equations. 

I n  general then, one deals with the  system o f  equations 

+/ y (x)  E 2- ;(x) = ?(x,;(x)), dx 

+ +  -3 

where y', y, and f a re  vectors, each having a number o f  components, N, equal 
k 
r-7 

t o  i m i ,  where k i s  the  number of  equations i n  the  set t o  be solved, and the  

i =1 

m a re  t h e i r  individual orders.  
i 

This vector d i f f e r e n t i a l  equation i s  equivalent t o  the in t eg ra l  

equation 

x+h 
;(x+h) = y"(x) + ?(t,;(t))dt. 

X 

A t  the point x = x x + h, t h i s  i n t e g r a l  i s  approximated f i rs t  by 
q q-1 



and then repeatedly by 

p=O 

Formula (1-3a) i s  ca l led  

the  Adams-Bashforth predictor  equation, and formula (l-3b) i s  the  Adams- 

Moulton corrector .  
* 

The coef f ic ien ts  @ and f3 are derived by the equivalent o f  
Q P  9 P  

4 

in tegra t ing  Lagrangian polynomials f i t t e d  t o  f ,  but are independent of 

both ? and h. 

through the  q poin ts , fo ,  fl, . . ., fqml, while t h a t  f o r  the  corrector  i s  

The polynomial f o r  the predictor  i s  of  degree q-1 passing 
4 4  4 

4 4 

of degree q passing through the  q+l points  ? 0’ fl, * 0 ,  f 
¶. 

~n e x p l i c i t  formula for  the  p 
9 P  

where the  (p:) represent binomial coef f ic ien ts  and the  y are found by the  
P 

recursion r e l a t ion  

= 1, p = 0, 1, 2, . .. 1 
y, + 1/2 yp-l + . . . + - p + l  yo 

* 
An e x p l i c i t  formula fo r  the  p i s  

9, 

- p = 1, 2, 3, 0 . .. * * 
where y = 1 and y - - Yp Y p - y  

0 P 

6 



Bounds on the errors for the two approximations are the maximums 

within the interval [x ,x ] of  
o q  

and of 

(for Adams -Bashforth) (1-4a) 

( for  Adams -Moulton) (1-kb) 

and M, the order of  the predictor-corrector system, is assumed to approximate 

that o f  the corrector, which is q + 9, 
2. The Computer Procedure 

Two computer procedures have been written to implement the Adams 

method, a single-precision version named ADAMS and a double-precision version 

named DADAMS. 

ADAMS can be found in [a', 
Only DADAN3 will be described here. A description o f  procedure 

Procedure DADAMS is written to be included in programs written 

The language is in double precision for the Burroughs B-5500 computer. 

Algol 60 augmented by additional features available in the Algol compiler 

for the B-5500. There are no unusual hardware requirements 

input and output to the procedure is under control of the including program 

through the formal parameter list. 

list are local to the procedure, and no files are used by the procedure. 

because all 

All variables not in the formal parameter 

7 



2.1 Parameters and Variables 

The following l is ts  of formal parameters and l o c a l  var iables  w i l l  

be useful  i n  describing the  operation o f  procedure DADAMS. 

o f  t h i s  discussion the  interchange of upper and lower case letters, necessi ta ted 

by approximating the  notation o f  [ 5 ]  within t h e  l imited character s e t  avai lable  

t o  a computer, i s  straight-forwarrd and N i l 1  be done f r e e l y  without fur ther  

comment. For double-precision var iables  t h e  i d e n t i f i e r  f o r  only the  most 

s ign i f icant  port ion i s  given. The i d e n t i f i e r  f o r  t h e  least s ign i f icant  

portion i s  the  same, fol lowed by an "L". 

I n  the  remainder 

Formal Parameters 

I d e n t i f i e r  

M 

X I  

XF 

Y 

DX 

EA 

ER 

ADAMSC OEFF 

Double 
R e a l  

Double 
R e a l  

Double 
R e a l  Array 

Procedure 

R e a l  

Integer 

Real 

Real Array 

Real Army 

Double 
Real Array 

Usage or Meaning 
3 

T,h" numb5r o f  components i n  the  vectors y, 
EA, and ER. 

I n i t i a l  value o f  t he  independent var iable .  

Final  value o f  the independent var iable .  

Current dependent var iable  vector .  Contains 
i n i t i a l  values at en t ry  and f i n a l  values a t  e x i t .  

3 

Calculates t h e  vector f(x,G(x)).  

Power of C 1  used i n  e r r o r  control .  

Number of back f points used i n  the  approximating 
polynomials. One less than My t he  order of t he  
method e 

3 

Upper bound on t h e  i n i t i a l  s tep  s i ze .  

Absolute e r r o r  bound vector .  

Relative error bound vector .  

a 



RKSFI1'EVA L Integer  Function evaluations per s t ep  f o r  procedures 
DSTART and DSWKS. 

REORDER Integer  Order of R.K.S method -to be used by DSTART 
and DSHA_NKS. 

RKSCOEFF Douh le  Coeff ic ients  f o r  DSTART and DSHAXKS. See the 
Real Array descr ipt ions of DSTART and DSHA?dKS elsewhere 

i n  t h i s  report  f o r  de ta i l s .  

DSTART Integer  Gives the  necessary points  f o r  s t a r t i n g  and 
Procedure r e s t a r t i ng .  Name contains the  fac tor  by inrhich 

C 1  i s  mult ipl ied t o  coordinate s tep  s i ze  
between DSTART and DADAMS. 

DSFiANKS 

UEB 

Procedure Used t o  complete f r ac t iona l  s teps  at  the ends 
of i n t e rva l s .  

Boolean T r u e  i f  t he  upper e r r o r  bounds a re  t o  be used 
f o r  corrector  i t e r a t i o n  control .  False i f  the  
lower e r r o r  bounds are t o  be used. 

The procedures DSTART, DSIZANKS, and F, as we l l  as the  coef f ic ien t  

arrays ADAMSCOEFF and RKSCOEFF, are not a pa r t  of t he  procedure DADAMS and 

must be included separately i n  a l l  programs using DADAMS (see  2.2 and 2.3). 

I dent i f  i e r  

X 

INTERV 

c1 

H 

c 2  

GR 

Type 

Double 
Real 

Double 
Real 

Integer  

Double 
Real 

Double 
Real 

Real 

Local Variables 

Usage o r  Meaning 

x current  value of t he  independent var iab le .  C f  

XF - X I ,  the  i n t e r v a l  o f  in tegra t ion .  

Two t o  an in teger  power. Determines E. 

INTERV / C 1 ,  tne  current  s t ep  s ize .  

Number of s teps  of s i z e  K remaining from X t o  XF. 

, used with CHANGE and ERROR. 
( H a s  a dummy l o w e r  half  i n  
ADAMSCOEFFL) 
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CHANGE Real 

ERROR R e a l  

Controls t he  number of i t e r a t ions  of t he  
corrector  equation. ( H a s  a dummy lower h a l f ) .  

Controls t h e  e r r o r  and running t i m e  through 
t h e  s tep  s i ze  (Has a dummy lower ha l f )  e 

Holds the  successive vectors ?(') of (1-3b) e 

q 
FNU Double 

Real Array 

FH 
3 

Double f h is tory  vector .  Contains gq-1 back points  f o r  
Real Array each of  t he  N components of  f (Two dimensions). 

3 

YP Double Predicted y vector, #'), t h e  y(O) o f  (1-3a). 
9 9 Real Array 

Double '*')of (1-3b) . Corrected y vector, #'), t h e  y 
3 

9 
YC 

C Double Constant pa r t  of -(V+') y f o r  a l l  v, t h e  ? of (1-3b). 

R e a l  Array ¶. 

R e a l  Array 
3 

A l l  l o c a l  arrays are dynamic with respect t o  N and Q and the  FH 

vector a r ray  i s  indexed cyc l i ca l ly  t o  avoid moving large numbers of components. 

For fur ther  details consult the  flow diagram and the  l i s t i n g  o f  procedure 

DADAM3 following t h i s  discussion. 

2.2 The F Procedure 

+ /  A procedure f o r  ca lcu la t ing  t h e  vector y = ?(x,;(x)) must be included 

global t o  a c a l l  f o r  procedure DADAMS f o r  each set of  d i f f e r e n t i a l  equations 

t o  be solved by a program using DADAMS. This procedure i s  ca l led  by DADAMS 

as the  formal parameter F and must i tself  have t h e  following formal parameter 

l ist :  

I dent i  f i e r  

N 

X 

YV 

Fv 

Type Usage or Meaning 
4 + 

Integer  Number of components i n  t h e  vectors YV and FV. 

Double 
Real 

Current value of the  independent var iable  e 

Double 
Real Array 

Double j? value vector (output) 
Real Array 

Current dependent variable vector ( input) .  

10 



N amd X may be ca l l ed  by value. The arrays YV and FV are one- 

dimensional s t a r t i n g  a t  zero and must be ca l l ed  by name. 

2.3 Orders Available 

Procedure DADAPIS i s  wr i t t en  t o  be completely general with regard 

t o  order, and any order may be used i f  the  necessary coef f ic ien ts  a r e  placed 

irL the ADAMSCOEFF ar ray .  For a given order M = q + 1, there  a re  2q + 2 = 2M 

coef f ic ien ts  which should appear i n  the a r ray  beginning a t  posi t ion zero  i n  

the following order: 

2.4 S ta r t ing  an Integrat ion 

Since the Adms method i s  a multistep method, it cannot start i t s e l f  
--t 

but must r e l y  on a s t a r t i n g  procedure t h a t  d i l l  supply a current y point and 

a t  l e a s t  y - l  f points which, together with a given i n i t i a l  f point, comprise 
4 --t 

a h is tory  upon which it can build.  The s t a r t i n g  procedure used here i s  the  

Runge-Kutta-Shanks procedure DSTART, described elsewhere i n  t h i s  repor t .  The 

number of function evaluations per  s tep  and the  order of Runge-Kutta-Shanks 

met’md used by DSTART may be varied a t  w i l l  by the  user  ’ihrough the formal 

partimeters J f  IbADAMS . 
the  o r d e r  of  Adams method being used for each given set of d i f f e r e n t i a l  

This allows achievement of optimum compatibil i ty with 

equations being solved. 

I n i t i a l  s tep  s i ze  i s  determined by the formal  parameter DX. The 

i n i t i a l  t r i a l  start  w i l l  be made with a s tep  H = INTERV / C1,  where C 1  i s  

s e t  t o  the smallest integer  power o f  two such t h a t  [HI. I’DX I and 

H < IDPERV Q. This causes procedure DADAMS t o  take a t  least one s tep  1 / - I  I’ 

11 



after s t a r t i n g  regardless o f  t he  magnitude of DX. I f  procedure DSTART 

sponding component of  e i t h e r  

cannot meet the  e r r o r  requirements a t  t he  i n i t i a l  H, it doubles C 1  

3 4 

EA -GR ER*GR +(e)  - or - e y 
C I P  C I P  

repeatedly u n t i l  these requirements can be m e t .  

2,5 Error  Estimates and Step Size Control 

To minimize running time without introducing e r ro r s  intolerably 

large,  the e r ro r  i n  each component o f  t he  f i n a l  Y" vector i s  controlled 
3 4 3 

through the  use of the  formal parameters EA and ER. 

maximum allowable absolute magnitude of t he  e r r o r  i n  each component of Y, 

and ER spec i f ies  t h e  maximum allowable r e l a t i v e  magnitude. 

EA spec i f ies  the  
4 

4 

These two 

e r r o r  control  vectors a re  used i n  conjunction with the  quant i ty  

, which i s  derived from the  bounds (1-4), and a para- 

meter P, chosen from the  i n t e r v a l  [1/2, 11 by empirical determination of 

t h e  randomness o f  the  round-off e r ro r  i n  a pa r t i cu la r  s e t  o f  d i f f e r e n t i a l  

equations. (P  = 1/2 corresponds t o  t o t a l l y  random error  and P = 1 corre-  

sponds t o  t o t a l l y  addi t ive l inear  e r r o r ) .  

i n  GR instead of Y t o  be conservative because the  quant i ty  being control led 

I n  pract ice  Y has been used 
q+l 

q 
i s  only an estimate of  t h e  t r u e  e r r o r .  

A l l  cont ro l  o f  corrector  i t e r a t ions  and s tep  s i ze  i s  done i n  s ing le  

precis ion using the  most s ign i f icant  portion of the  var iables .  To make a 

t r i a l  step, procedure D A D W  increases X by the  current H and calculates  

#'), t he  ;io) of (1-3a), together with the 2 of (1-3b). It then calculates  
... 

('+') o f  (1-3b). and y( ) J  t he  y 
q 

-3c ?(') 
(2 

3 +A) -3(v) 

= f b , Y  

A t  each corrector  i terat ion,v,  the vector CHANGE E y - Y  

i s  t e s t ed  i n  one of two ways according t o  the s e t t i n g  o f  t he  Boolean parameter 
4 

UEB. When UEB i s  t rue,  i f  every component o f  CHANGE i s  less than the  corre- 
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are retained and the  corrector  i t e r a t i o n s  a re  terminated. When UEB i s  

f a l se  every component of C M G E  must be smaller than the  corresponding 
4 

component o f  e i t h e r  IG 'GR, 
C$ZQ-+5 

ER *GR . ?(') 1 before 4 f 4 

and 4 

ponent of CHANGE f a i l s  t o  m e e t  the  proper c r i t e r ion ,  a new f , y 
4 

CHANGE a re  computed and the  t e s t  i s  then repeated. Whenever UEB i s  t r u e  

the  retained 7") and 

vector E S O R  i s  formed. 

are corrected one addi t ional  time before the  

The estimated e r ror  

If any component of ERSOR i s  
I 4  I I +  

ER .GR 

3 

f points  and a new current  y 

vector ERR'OR i s  defined t o  be 1 
l a rge r  than the  corresponding components o f  

- #" 1 . 
, t he  s tep  s ize  i s  halved and q-1  new 

are  obtained from procedure DSTART. If it i s  
3 

not necessary t o  halve the s tep  s ize ,  $" becomes the  new y: If every 

component of  ERROR i s  smaller f o r  th ree  consecutive s teps  €han the  cor- 
3 

4 4 

- 1 ,  then i f  responding components of both 

there  are a t  l e a s t  2q-1 back points  i n  the  FH vector and there  are a t  l e a s t  

EA*GR ER *GR 1 tip. 2Ql-5 1 ""," 1 clP .zQ+5 

two more s teps  o f  the  current s i ze  necessary t o  reach XF, the  s tep  s i ze  i s  

doubled before the next t r i a l  s tep .  If it i s  not  necessary e i t h e r  t o  halve 

or t o  double the  s tep  size,  X i s  increased by H and a new t r i a l  s tep  i s  made. 

2.6 Finishing an In t ema t ion  

Procedure DADAMS continues as described u n t i l  XF i s  reached unless 

repeated halvings and doublings of the  s tep  s i z e  bring the  independent var i -  

able  t o  within a f r ac t ion  o f  a s ingle  s tep  of XF. When t h i s  occurs t h e  

f r ac t iona l  s tep  i s  completed by t h e  Runge-Kutta-Shanks procedure DSKANKS, 

described elsewhere i n  t h i s  repor t .  The order o f  Runge-Kutta-Shanks method 



and t h e  number of function evaluations per s t ep  used here w i l l  be the  

same f o r  a given integrat ion as those used by procedure DSTART. 

3. Flow Diagram and Program List ing 

Figure 1 i s  the  flow diagram f o r  t he  method of Adams, Bashforth 

and Moulton. The program l i s t i n g  follows a t  the  end o f  t h i s  section. 

4. Results and Conclusions 

The two methods of corrector  i t e r a t i o n  control  included i n  DADAMS 

were selected from a s e t  of  t e n  on the  basis of r e su l t s  of a s m a l l  number 

of t e s t  cases. Performance of these two methods w a s  then compared i n  a 

large number of cases involving four d i f fe ren t  s e t s  of  equations, values 

o f  q between 10 and 15, and accuracies asked between 10 and 10 . -10 -20 

Several f a i r l y  c l e a r  r e s u l t s  were obtained. 

(1) The ste'p s ize  controls  always produced a t  least the  accuracy 

asked, using both methods o f  i t e r a t i o n  control,  except with one s e t  of 

equations believed t o  have extremely addi t ive nonlinear e r r o r  buildup. 

With t h i s  set of equations it w a s  necessary t o  request from 1.3 t o  16.3 

times (not decades) the  accuracy desired thrmghout the  range obtainable, 

even with the parameter p set a t  one. To obtain these r e s u l t s  it was 

necessary t o  choose a reasonable value of  p 

e r r o r  t o  control  ( r e l a t i v e  e r ro r  fo r  rapidly increasing in tegra ls  and 

(p  > 1/2) and a reasonable - 

absolute error  f o r  rspidly decreasing in t eg ra l s ) .  

( 2 )  When plot ted on double l o g  paper, accuracy obtained vs 

accuracy asked Jas s l igh t ly  e r r a t i c  but roughly p a r a l l e l  t o  the 45' 

reference l i n e  across many decades for a l l  cases p lo t ted .  
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( 3 )  Except f o r  a s m a l l  percentage of cases d is t r ibu ted  mostly 

a t  random, t he  values o f  t he  parameters f o r  procedure DSTART which resu l ted  

i n  the l e a s t  function evaluations t o  obtain a given accuracy were RKSORDER 

= 7 and RKSFNEVAL = 9; however, t he  values RKSORDER = 8 and RKS-AL = 12 d id  

produce greater e f f ic iency  a t  an accuracy asked of  

c_ on m e  rapidly decreastng in t eg ra l .  

(4) 

f o r  a l l  values of 

The values of  g giving the  greatest  accuracy obtained for a 

given number of function evaluations on a l l  sets o f  equations tested were 

10, 11, and occasionally 12. Higher q' s Gere always l e s s  e f f i c i e n t .  

( 5 )  P l o t s  of function evaluations against  accuracy obtained 

showed l i t t l e  difference between the  two methods o f  corrector  i t e r a t i o n  

control  on two s e t s  of equations. 

of  control  showed a much steeper slope than the  other  f o r  each value of  q, 

giving it a higher e f f ic iency  a t  lower accuracies and a lower eff ic iency 

a t  higher accuracies. On t h e  fourth s e t  of equations t h i s  phenomonen 

reappeared, but i n  t h i s  case the opposite method had the  steeper slope.  

ZL esch Jf these cases t h e  absolute e r r o r  w a s  being controlled.  There was 

siso some crossing of t h e  functions vs accuracy p lo t s  fo r  d i f fe ren t  values 

cl" q tcr. each msthod of i t e r a t i o n  cont ro l  on both sets of  equations. 

On a t h i r d  set o f  eqJations me method 

Users preparing t o  run a large number of cases with a s ingle  sex 

of  equations should of ten f ind  it helpf'ul t o  p lo t  the  r e s u l t s  of  methodical 

var ia t ions i n  t he  parameters of  DADAMS. The r e s u l t s  reported here did not 

appear upon examination of the  table o f  tes t  cases used t o  se lec t  t h e  two 

methods of  corrector  i t e r a t i o n  control,  but emerged only after the p lo t t i ng  

o f  a large number of cases run fo r  evaluation of t he  two methods chosen. 



-0 
k 
0 

4-1 



g +:: 

4 m n  



Repeated s tep  s i z e  expansions and contractions by over 1000 t o  1 occurred 

on one set of  equations and it i s  probable t h a t  for many sets of  equations 

s l i g h t  changes i n  cont ro l  logic  can produce considerable changes i n  

eff ic iency.  
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B. The Method of S t e t t e r ,  Gragg, and Butcher 

1. Description of  t he  Method 

The method of S te t t e r ,  Gragg, and Butcher, abbreviated Butcher's 

method i n  t h i s  report ,  i s  a multistep predictor-corrector method f o r  t h e  

numerical solution of t he  f i r s t -o rde r  vector d i f f e r e n t i a l  equation 

3 l  d 3 
y (x) = ?(x) = T'(x,?(x)), Y h  = y" 

0 0 

A complete derivation and description of  Butcher's method can be 

found i n  [13> and [211; only the  e s sen t i a l  formulas are included here. 

The following notation i s  adopted. L e t  k be a pos i t ive  integer,  

h be the  s t ep  s i ze  (assumed t o  be constant over some set of calculat ions) ,  

3 3 3 3 3 

x =, xo + n. h, yn = y(xn,, and fn = f (xn, yn). n 

Butcher's method consis ts  o f  two predictor  and one corrector  formulas. 

The first predictor  formula i s  

k k 

t he  second predictor  formula i s  

k k 

j=1 j=1 

and the  corrector  formula i s  

k k 



The predictor  formula (1-2) gives y" i n  terms of the  y values 

and the  function values at  the  k points  previous t o  x ; for O < W ,  yn-@ 

i s  the  value a t  a point between x 

gives y 

k points  as wel l  as the function value 

gives y 

k points as w e l l  as the  function values f 

abtained from the y' predicted by (1-3)e n 

of Dahlquist [ 3 1, [4 1) e x i s t  for l<k<7; the corrector  is  of order 2k I- 1 

i n  these formulas. The coef f ic ien ts  f o r  14x4, 8 = 1/2, and for 4<k<6, 

0 = 1/3, are  given i n  [13]. 

n -6 
3 

and x e The predictor  formula (1-3) 

i n  terms of the y values and the  function values at the previous 

The cor rec tor  formula (1-4) 

i n  t e rns  of the  y values and the  function values at  the  previous 

n -1 n 
3 

n 

n-8" 
3 

n 
4 

and the  function value ?! n -6 n 

Stable formulas ( i n  the sense 

..- 
I -  - -  

4 

For k = 1, Butcher's method i s  se l f - s ta r t ing ,  fo r  only ynel and 
3 

a re  needed t o  apply (1-2). For k>l, however, it must be assumed 
f n - l  

tha t  t he  values 
. k  

and {??n-i i=l i=l 

4 

IYn-i I 

have been obtained from some s t a r t i n g  procedure o r  from previous calculat ions.  

(1-2) i s  applied t o  obtain y n-0' and fn-e i s  then calculated.  

applied t o  obtain fn, and Zn i s  then calculated,  Finally,  (1-4) i s  applied once 

t o  obtain y" . The predicted value of y"n, obtained from (1-3), i s  compared with 

the corrected value of yn, obtained from (1-4) If the two values are  i n  

su f f i c i en t  agreement, the s t ep  i s  accepted; i f  not, the s tep  i s  rejected.  

4 

(1-3) i s  next 

n 
3 

Note t h a t  t h e  cor rec tor  (1-4) i s  only applied once; repeated appl icat ion 

of t h i s  corrector  leads t o  l e s s  ra ther  than more accuracy. 
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2. The Computer Program 

The Butcher computer program i s  a Burroughs B-5500 ALGOL double- 

precis ion procedure whose declarat ion i s  as follows: 

procedure butcher (n, x i ,  x i l ,  xf, xfl ,  y, yl ,  f, ea, er ,  p, dx,rksfn, 

rksorder, rkscoeff, rkscoeffl ,  boogerfactor, k, 

butchercoeff, butchercoeffl, start, dshanks); 

value n, x i ,  x i l ,  xf, x f l ,  p, dx, rksfn, rksorder, k; 

in teger  n, irksfh, rksorder, k; 

r e a l  xi ,  x i l ,  xf, x f l ,  p, dx, boDgerfactor; 

r e a l  a r ray  y, yl, ea, e r ,  rkscoeff, rkscoeff l ,  butchercoeff, 

butc hercoe f f l  [ 0 1; 

procedure f, dshanks; 

in teger  procedure s t a r t ;  

The paraxneters o f  the procedure a re  defined as follows: 

n - - t he  number o f  dependent var iables  i n  the vectors y" and f 
.-I 

xi, x 2  - t he  high and low halves, respectively,  of  x t h e  s t a r t i n g  
0' 

value of the  independent var iable  x 

xf, x f l  - - the  high and low halves, respectively,  of the  f inal  value o f  

the independent var iable  x 

fi - the arrays i n  which are  located the  high and low halves, respectively,  
3 

;(xi, x i l )  upon en t ry  and of ;(xf,xfl) upon e x i t  -- - -  
3 - 1 3  

Of yo = 

f - the  double-precision procedure which computes f = f (x ,y)  

ea  - the  a r r ay  containing the  absolute e r r o r  vector - 
- e r  - the  a r r ay  containing the r e l a t i v e  e r r o r  vector 

p - t he  exponent used i n  step-size cont ro l  - 
dx - the  suggested i n i t i a l  s tep.  s ize  - 
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rksfn - t he  number of function evaluations used i n  the  Runge-Kutta- 

Shanks s t a r t i n g  and closing procedure 

rksorder - the order of the  Runge-Kutta-Shanks closiiig procedure 

rkscoeff, rkscoef f l  - t h e  arrays containing the  high and low halves, 

respectively,  of  the  Runge-Kutta-Shanks coef f ic ien ts  f o r  t he  s t a r t i n g  and 

closing procedures 

boogerfactor - a fudge f ac to r  used i n  s tep-s ize  cont ro l  

- k - the  in teger  used i n  describing Butcher's method 

butchercoeff, butcherzoeffl - the  arrays cmta in ing  the  high and low 

halves, respectively,  of  t he  Butcher coef f ic ien ts  

start  - the  double-precision s t a r t i n g  procedure 

dshanks - t he  double- precision closing procedure 

The procedure performs the  numerical in tegra t ion  o f  (1-1) i n  double 

precis ion from x = x i  - t o  x = xf (For t he  convenience o f  description, t h e  low 

half of a var iable  i s  of ten not mentioned.). The s t ep  s i ze  h used is always 

the  length o f  t h e  in t e rva l  xf - -  - x i  divided by a power of 2. I n  order t o  avoid 

e r r o r  build-up i n  the independent variable two counters, & and - c2, are kept. 

- c l  i s  always a posit ive,  i n t eg ra l  power of  2, and h = (xf - xi ) /c l .  - -  c2 i s  the  

number o f  s teps  necessary t o  s t ep  from the  present value of x t o  xf - using the  

current s tep  s i ze  h. I n i t i a l l y ,  2 2  = cL; as each s t ep  i s  taken C 2  i s  decremented 

by one and the  present value o f  x is  computed by x = xf - - If h i s  halved, 

01 and - c2 are  doubled; i f  h i s  doubled, - el and c2 - a re  halved. Hence e 2  - need - 
not be in tegra l .  

3 4 -+ 
The e r r o r  vectors ea  and er ,  l i k e  y, have - n components. (Although the  

base of the  arrays x, yl, 2, and - e r  i s  zero, the - n components are placed 
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in positions 1, 2, . . n of the arrays.) The procedure's errar control - 
attempts to guarantee that, in integrating from xi to xf, each component of 

y will not be in absolute error more than the corresponding com-ponent of ea 

and will not be in relative error more than the corresponding component of 

er. At each step, the procedure requires that f o r  each i, lda, either the 

absolute error in y [i! does not exceed ea [i]/(cl-) o r  the relative error in 

3 4 

3 

- -- 
P 

I - - 
y [i] does not exceed - er [i]/(clg). 

3 3 

If p = 1 and er = 0 then the accumulated error in any component of y 
3 

cannot exceed the corresponding component of ea. If the error is assumed to 

accumulate randomly as the square root of the number of steps, - p = 1/2 and 
4 

er = 0 will cause 

the corresponding 

If p = 1 and 

cannot exceed the 

the accumulated error in any component of y" to be approximately 

component of ea 

ea = 0 then the accumulated errar in any component of y 

corresponding component of er times the largest value 

4 

.-t 4 

3 

assumed by that component of y during the integration. If the error is 

assumed to accumulate randomly as the square root of the number of steps, 

E = 1/2 and ea = 0 will cause the accumulated error in any component of y to 

be approximately the corresponding component of er times some average value 

assumed by that component of y during the integration. 

3 4 

3 

3 

The procedure - f which computes 2 = 2 (x,;") has the following declaration: 
procedure f (n, x, xl, yv, yvl, fv, fvl); 

value n; 

integer n; 

real x, xl; 

real array yv, yvl, fv, fvl LO]; 
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The parameters of the procedure f a re  defined as follows: 

- n - the  number of dependent var iables  i n  the vectors y" and I' 
- 

- x - the  value of the  independent var iable  

yv, v y l  - t he  arrays i n  which the high and low halves, respectively,  

of y" a r e  stored 

- fv, - t he  array i n  which the  high and low halves, respectively,  

of B a r e  stored a f t e r  computation. 

The procedure start  is  the  double-precision general multistep method 

s t a r t i n g  procedure described i n  paragraph E of t h i s  chapter. The procedure 

dshanks i s  the  double-precision Runge-Kutta-Shanks integrat ion procedure 

described i n  paragraph D of t h i s  chapter. The coeff ic ient  arrays rkscoeff 

and rkscoef f l  contain the  high and low halves, respectively,  of the  Runge- 

Kutta-Shanks coeff ic ients  i n  the order required by the procedure s t a r t  and 

dshanks. The number of function evaluations rksfn i s  required by both s t a r t  

and dshanks; the order rksorder i s  required by dshanks. 

The fudge f ac to r  boogerfactor, cal led 6 f o r  the remainder of t h i s  section, 

i s  necessary t o  make the difference between the predicted and corrected values 

of 3n a be t t e r  estimate of the  error a t  each s tep.  The computed estimate, 

before d iv is ion  by 6, i s  far la rger  than the ac tua l  s t ep  e r ror .  

The a r ray  butchercoeff contains the  high halves o f t h e  coeff ic ients  of 

(1-2), (l-S), and (1-4) i n  the order A1, B1, a 1 9  bl> PJ-9 ' " 9  \ >  Bk9 

ak9 bk, %, b, b, B, B ~ .  

butchercoeffl  contains the low halves i n  the same order. 

A i s  i n  the zero  posi t ion of the  array.  The array 1 

The suggested i n i t i a l  s tep  s i ze  i s  optional. The procedure first se t s  

> 
C l :  2 and doubles cl u n t i l  el,-k-1. If dx =O or - dx #O and h s  I - dx I then & is  - - - 
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l e f t  alone. Otherwise, & i s  doubled u n t i l  h5 I dx 1 - 
The in tegra t ion  now begins. 

i s  computed. The s t a r t  procedure i s  cal led t o  obtain 

, and %-1 . 

- c l  and - c2 are  adjusted i f  h was changed by the start procedure. - c2 is  

decremented by k-1 s ince k-1 s teps  took place i n  the  s t a r t  procedure. If 

- C2<l, closing takes place.  Otherwise n i s  s e t  equal t o  k ,  Then the  following 

sequence takes place.  
4 

(1-2) i s  used t o  compute y - from t h i s  ? n-0' n-8 is  computed. 

-+ 
Then (1-3) fs used t o  pred ic t  ;n; from t h i s  f i s  computed. 

(1-4) i s  used t o  cor rec t  yn. 

between the  predicted value of ;n and the  corrected value of yn; v is  used 

a s  a measure of t he  accuracy of t he  s tep.  

Finally,  n 
4 + 

Let v be the  vector which i s  the  difference 
4 4  

+ 
F i r s t ,  each component of v is compared with t h e  corresponding component 
.--) 

of 6 ea/(2'-22k+4) f o r  absolute e r r o r  and with the  corresponding component 

Of 6 *&@*22k+4) times the  corresponding component of the corrected ;ralue 

of yn f o r  r e l a t ive  e r ror .  

or the  r e l a t ive  e r ro r  t e s t ,  the  present s tep  s i z e  is  considered too s m a l l  and 

doubling i s  cal led fo r .  If some component of v exceeds e i t h e r  the  absolute or 

4 4 

If no component of v exceeds e i t h e r  t he  absolute 

4 

the  r e l a t i v e  e r r o r  tes t ,  t h i s  component and a l l  remaining components a re  

compared w i t h  the  corresponding component of 6 e ea/dP.  I f o r  absolute e r ro r  
4 



+ P  and with the  corresponding component of Pe r / c l -  - t i m e s  the  corresponding 

component of t he  corrected value of y for r e l a t i v e  e r ro r .  

of  v exceeds e i t h e r  t h i s  absolute o r  t h i s  r e l a t i v e  e r r o r  test ,  t he  present 

s t e p  s i ze  i s  considered adequate. If some component of v exceeds e i the r  

4 

I f  no component n 
4 

4 

t h i s  absolute or t h i s  r e l a t i v e  e r r o r  test ,  t h e  present s t e p  s i z e  i s  con- 

sidered too large and halving i s  ca l led  fo r ,  

I f  doubling i s  ca l led  f o r  during three consecutive s teps  and i f  su f f i c i en t  

h i s to ry  (2k-1 p o h t s )  i s  available with the present s tep  s ize ,  t he  s tep  i s  

considered accepted, c2 i s  decremented, the corrected value of y i s  used t o  

compute f n 

I f  - c 2 d ,  closing takes place; otherwise 

4 

n _. 

3 4 3 

= f(xn, yn), _. c l  and - c2 are  halved, and the  s t ep  s i ze  h i s  doubled. 

.. . 
4 k-1 

IYi Ji=o 

becomes 
* k-1 

i7n-2k+2+2i l i = O  , 

becomes 
4 . k-1 

lfn-2k+2+2i l i = O  , 

x becomes x and n i s  set equal t o  k, Then control  re turns  t o  the 

point a t  which (1-2) i s  used t o  compute yn - 
k-1 n’ 

4 

If the present s tep s ize  i s  considered adequate, o r  i f  doubling is  cal led 

for without being-cal led f o r  during three  consecutive s teps  or with insuf f ic ien t  

h i s tory  available,  the s tep  i s  considered accepted, c2 I i s  decremented, and the  

corrected value of  y i s  used t o  compute ?) = f (xnj  yn) 

place; otherwise n i s  s e t  equal t o  n+l and control  returns t o  the point at 

which (1-2) i s  used t o  compute yn - 

3 .+ 4 

If - c 2 d  closing takes n n 

--3 



If halving i s  ca l led  for,  the s tep  i s  rejected,  - c l  and _. e2 are doubled, 

and the  step s i ze  h i s  halved. I f  I c2ik-1, closing takes  place; otherwise 
3 3 4 

x becomes x y becomes y ? becomes f and control  re turns  to 
8 n-1 0 n-1' 6 n-1' 

the point a t  which the  start procedure i s  cal led.  

Closing takes place whenever the  next s tep  using the  formulas (1-2), 

(1-3) and (1-4) or the  next k-1 s teps  using the start procedure would carry 

t he  in tegra t ion  beyond - xf If c2>0, t he  Runge-Kutta-Sharks procedure i s  

used to in tegra te  from the  present value of x to - xf; i f  c2 - = 0, the  in tegra t ion  

i s  already complete. 

Several  eff ic iency measures are employed i n  the  program. F i r s t ,  t h e  

{p . >': k 
, {bj tjZl , J J=1 J J=o 

, b, and B are mult ipl ied by coef f ic ien ts  {B. 

the  s tep  s i z e  h and s tored as multiplied u n t i l  t h e  s t ep  s i z e  changes. 
3 3 

Second, t he  vectors b*ea/(clg - 22k+4), b*er/(clE I 22k+4), 6 . ~ / c l ~ ,  - 
3 4 " P  and 6'er/cl- _. are  calculated from 6, ea, and e r  and s tored 

as calculated u n t i l  t he  s t e p  s i ze  (and - c l )  changes. Third, cyc l ic  indexing 
3 

i s  used to avoid moving t h e  y value and function value h i s t o r i e s  a f t e r  

each s tep  or s e t  of s teps  unless doubling takes place. 

3. Flow Diagram and Program Lis t ing  

Figure 2 i s  the  flow diagram f o r  Butcher's method. The program 

l i s t i n g  follows at  the  end of t h i s  section. 

4. Results and Concl.usions 

Butcher's method requires  th ree  function evaluations per accepted 

step; t h i s  would seem to make it i n f e r i o r  to Adams' or Cowell's method, e i t h e r  

of which of ten  runs f o r  large numbers o f  s teps  using two function evaluations 



4 
A 

k 
0 
(H 
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(one f o r  t h e  predictor  and one f o r  the cor rec tor )  per accepted s tep.  

However, the s t e p  s i ze  required by Butcher's method i s  usual ly  considerably 

l a rge r  than tha t  required by Adams' o r  Cowell's method for the  same accuracy; 

hence Butcher's method takes l e s s  steps,  and the number of function evaluations 

required by a11 th ree  mult is tep methods i s  approximately the  same fo r  a given 

accuracy 

Butcher's method gains i n  order o f  accuracy f o r  a given number o f  

h i s t o r y  points on which the next computed value i s  based. 

however, i s  i n  t h e  need t o  use y h i s to ry  as  wel l  as f h is tory .  The t o t a l  

number of  terms i n  each of the sums (1-2), (l-3), and (1-4) i s  comparable 

t o  those used i n  the  other mult is tep methods f o r  the sane order of accuracy. 

From t h i s  standpoint, it i s  not c l ea r  why Butcher's method takes l a rge r  s teps  

than the other  mult is tep methods. 

The pr ice  paid, 
4 4 

The corrector  (1-4) can only be applied once. The o ther  mult is tep 

correctors  can be repeatedly applied f o r  some gain i n  accuracy without 

s tep-s ize  change. 

Butcher's method takes  l a rge r  s teps  than the other  mult is tep methods for 

a given accuracy. A method which is  designed t o  use the  corrector  only once 

should produce the  sane accuracy as a method which allows repeated corrector  

i t e r a t ion ;  however, t he  need of repeated corrector  i t e r a t i o n  usual ly  ind ica tes  

t he  need o f  a smaller step s ize .  

From th i s  point of view, perhaps it i s  not unusual t h a t  

The s tep-s ize  cont ro l  employed i n  t h i s  program seems a l so  t o  r e f l e c t  

t he  f a c t  that the  corrector  cannot be i t e r a t ed .  The difference between 

predicted and corrected values i s  used as an estimate o f  e r r o r  at  each step; 

th i s  has been used w i t h  considerable success i n  Adams' method. However, 
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r e s u l t s  obtained from t he  r e s t r i c t e d  three-body o r b i t s  show t h a t  t h i s  

measure i s  not an e n t i r e l y  r e l i a b l e  one for  Butcher's method. No one 

fudge f ac to r  6 was found t o  be sa t i s f ac to ry  for a l l  values o f  k; moreover, 

for  a given k, no value o f  6 was found t o  be sa t i s f ac to ry  f o r  a l l  accuracies,  

For each order the optimum value o f  6 increased as higher accuracies were 

asked; fo r  each accuracy the  optimum value of 6 was somewhat higher f o r  l a rge r  

values of  k>2. For k=l, the program's s t ep  s i z e  cont ro lwas  e n t i r e l y  

unsatisfactory,  th i s  value o f  k produces a t h i r d  order Runge-Kutta type 

formula, where the  predicted value i s  l i k e  one of the intermediate 

calculat ions and which does not bear to=,  much resemblance t o  t h e  f i n a l  

computed value 

- 

The decaying exponential gave in t e re s t ing  r e s u l t s  with Butcher's 

method. The number o f  function evaluations wasa Enear  function o f  e r r o r  

obtained r igh t  up t o  the l i m i t s  of the  machine's accuracy. 

s p l i t t i n g  in to  branches, as shown by the  corresponding r e s u l t s  obtained by 

Cowell's method; t h i s  could w e l l  be due t o  the fact t h a t  Butcher's method 

allows only one corrector  appl icat ion and requires  a decrease i n  s tep  s i ze  

i f  one appl icat ion i s  not su f f i c i en t  

There w a s  no 
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C .  The Cowell Method 

1. DescriDtion o f  the  Method 

Cowell's method as described herein i s  a multistep predictor-corrector 

method f o r  t h e  numerical solut ion o f  the  f i r s t -o rde r  vector d i f f e r e n t i a l  

equation 

A completion derivation and description of Cowell's method can be found 

i n  [7] and [9]; only the  e s sen t i a l  formulas are included here. 

The following notation i s  adopted. Let q be an even pos i t ive  integer,  

m = q/2, h be the  s t e p  s ize  (assumed t o  be constant over some s e t ' o f  calculat ions) ,  

3 4 3 -3 

xn = xo + nh, yn = y (xn), and fn = f (xn, yn). 

The corrector  formula i s  

j = O  

iwd the  mid-range formula i s  

q 
3 

3 + I M  'I: 1 
'n j n+m-j' 

j = O  
(1-4) 

3 -1 and t he  function values fn-1/2 The predictor  formula gives y i n  terms of 6 
n 
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at the  previous q+l points;  the corrector  formula gives a new value of  

n the  old value of ;n, and the  function values at  3 -1" y i n  terms of 6 

the previous q points;  t h e  mid-range formula gives a value of yn i n  terms 

fnm1I2, 
4 

and the function values a t  the q+l  consecutive points  centered -1" 
fn-1/2 

around x n 

The equation 

completes the set of formulas necessary f o r  the numerical solut ion of (l-l)* 

I f  it i s  assumed t h a t  

" 9  IfiJ i=o 

have been obtained by some s t a r t i n g  

can be applied w i t h  ri = m t o  obtain 

4 

Ym and 

procedure, the  mid-range formula (1-4) 

Equation (1-5) can then be applied m times t o  obtain 

For each posi t ive integer  i 

-1" 
fq+i-1/2 

can be computed from 
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-.3 

and i! using (1-5); Yq+i can be computed using the predictor  (1-2); q+P -1 

can be computed from the  predicted value; yq+i can be computed using the  fq+i 

corrector  (1-3); ?q+i can be computed from t h e  corrected value; i f  necessary, 

i t e r a t i o n  can be resorted to ,  using (l-3), u n t i l  t h e  last two computed values 

agree t o  su f f i c i en t  accuracy. For any j > m  a value of y can be 
Of Yq+i - q+ j -m 
obtained from the  mid-range formula (1-4) and compared with the  value obtained 

from the  predictor-corrector s tep.  If the  two values of  y 

agreement, t h e  values up through y are considered acceptable; i f  not 

i s  considered the last acceptable value and a l l  values beyond are rejected.  

-3 -3 

-3 4 

4 

are i n  su f f i c i en t  q+ j -m 
3 4 

J 'q+j-m s+j 

Hence , 
apply Cowell's 

- .  

t he  knowledge of  (1-2), (1-3), (1-4), and (1-5) i s  suf f ic ien t  t o  

method i n  the  numerical solut ion of (1-1). 

q 

The coef f ic ien ts  
c .  

' a re  given i n  [: fo r  q = 4, 6, 8, 10, 12, j=o , and IMji j=o 

14, and 16. 

2. The Computer Program 

The Cowell computer program i s  a Burroughs B-5500 ALGOL double-precision 

procedure whose declarat ion i s  as follows : 

procedure cowell (n, x i ,  x i l ,  xf, x f l ,  y, yl ,  f ,  ea, er, p, dx, rksfn, 

rksorder, rkscoeff, rkscoeffl ,  q, cowellcoeff, 

cowellcoe f f 1, start, dshanks ) ; 

value n, x i ,  x i l ,  xf, x f l ,  p, dx, rksfn, rksorder, q; 

in teger  n, rksfl?, rksorder, q; 

r e a l  x i ,  x i l ,  xf, x f l ,  p, dx; 

r e a l  a r ray  y, yl ,  ea, er,  rkscoeff, rkscoeffl ,  cowellcoeff, cowellcoeffl  [ O ] ;  

procedure f, dshanks; 

in teger  procedure start; 
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The pa rme te r s  of the  procedure are defined as follows: 

m n - the  number of dependent var iables  i n  the  vectors ;and ? 
x i  x i 1  - t h e  high and low halves, respectively, of x the  s t a r t i n g  -' - 0' 

value of t he  independent var iable  x 

xf, x f l  - the  high and low halves, respectively, of t he  f i n a l  value of - 
t he  independent var iable  x 

x, yl - t h e  arrays i n  which are located t h e  high and low halves, respectively,  
4 -3 3 

of yo = y (xi  x i l )  upon en t ry  and of y (xf -2 .-- ' I 
- f - t he  double procedure which computes 2 = f (x,y') 

x f l )  upon e x i t  
--3 

ea - the  a r r ay  containing the  absolute e r ro r  vector - 
e r  - the  a r r ay  containing the  r e l a t ive  e r r o r  vector 
_. 

- p - the exponent used i n  step-size control  

dx - t he  suggestea i n i t i a l  s t ep  s i ze  - 
rksf'n - t he  number of function evaluations used i n  the  Runge-Kutta-Shanks 

s t a r t i n g  and closing procedures 

rksorder - the order o f  t he  Runge-Kutta-Shanks closing procedure 

rkscoeff, rkscoef f l  - the  arrays containing the  high and low halves, 

respectively, o f  the  Runge-Kutta-Shanks coeff ic ients  fo r  the s t a r t i n g  and 

closing proceduxe s 

- q - the  even integer  used i n  describing Cowell's method 

cowellcoeff, cowellcoeffl - the  arrays containing the high and low halves, 

respectively,  of t he  Cowell coef f ic ien ts  

start - the  double-precision s t a r t i ng  procedure 

dshanks - the  double-precision closing procedure 

P 
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The procedure performs the  numerical in tegra t ion  of (1-1) i n  double 

precis ion from x = I x i  t o  x = x f .  - 
hal f  o f  a var iable  i s  of ten  not mentioned.) 

(For convenience o f  description, the  low 

The s tep  s i ze  h used i s  always 

the  length of the  in t e rva l  xf  - x i  divided by a power of 2. I n  order t o  
L U  

avoid e r r o r  build-up i n  the independent var iable  two counters, - c l  and - c2, 

are kept. I c l  i s  always a posit ive,  i n t e g r a l  power o f  2, and h = (xf _. - x i ) / c l .  - -  
e2 i s  the  number of  s teps  necessary t o  s tep  from the  present value of x t o  x f  - 
using the  current s t ep  s i ze  - h. 

e2 i s  decremented by one and the  present value of x i s  computed by 

x = - xf - h - c2. 

- 
I n i t i a l l y ,  c2 = g; as each s t ep  i s  taken 

I f  h i s  halved, - c l  and c2 a re  doubled; i f  h i s  doubled, 

c l  and e2 are halved. Hence e2 need not be in t eg ra l .  - - - 
3 3 -9 

The e r r o r  vectors ea and er, l i k e  y, have - n components. (Although the  

3ase of t h e  arrays y, I -  yl, ea, and - er  i s  zero, the  - n components are placed 

i n  posi t ions 1, 2, . . * J  - n of  t he  arrays.)  The procedure's e r r o r  cont ro l  

attempts t o  guarantee tha t ,  i n  in tegra t ing  from x i  - t o  xf, each component of  

y w i l l  not be i n  absolute e r ro r  more than the corresponding component of 

ea  and w i l l  not be i n  r e l a t ive  e r r o r  more than the  corresponding component 

o f  er. A t  each step, t h e  procedure requires t h a t  fo r  each i, l<is, e i t h e r  

t h e  absolute e r r o r  i n  - y [i] does not exceed _. ea [i]/(cl-) - or t h e  r e l a t i v e  

e r ror  i n  - y [i] does not exceed - er  [i]/(cl-). - 

4 

3 

3 

P 

P 

4 3 

If E = 1 and er  = 0 then the  accumulated e r r o r  i n  any component of y 

cannot exceed the  cprresponding component of ea. If the e r r o r  i s  assumed t o  
4 

accumulate randomly as the  square root  o f  t he  number of steps, 2 = 1/2 and 

3 3 

e r  = 0 w i l l  cause the  accumulated e r r o r  i n  any component o f  y t o  be 
3 

approximately the  corresponding component of ea  e 
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3 3 

I f  2 = 1 and ea = 0 then the accumulated e r r o r  i n  any component of y 
4 

cannot exceed the corresponding component o f  e r  times the largest value 

assumed by that  component of y" during the integrat ion.  If the  e r r o r  i s  

assumed t o  accumulate randomly as the  square root  of the number of steps, 

p = 1/2 and ea = 0 w i l l  cause the accumulated e r r o r  i n  any component of  y 

t o  be approximately the corresponding component of er  times some average 

value assumed by that component of y" during the integrat ion.  

4 3 

4 

The procedure - f which computes ? = 'I: (x,y') has the following declaration: 

procedure 

value n; 

integer  n; 

real x, x l ;  

real a r ray  y-v, yvi,  fv, fvl [ o ] ;  

fv, 

The parameters of the  procedure - f are d-fined as follows 

- n - the number of dependent variables i n  the vectors y and f 
3 4 

x - the value o f  the  independent variable 

E, & - the arrays i n  which the high and low halves, respectively, 
4 

of y are stored 
4 

-9 f'v - f'vl - the a r ray  i n  which the high and low halves, respectively, of  f 

are s tored a f t e r  computation. 

The procedure start i s  the double-precision general multistep method 

s t a r t i n g  procedure described i n  paragraph E of  t h i s  chapter. The procedure 

dshanks i s  the double-precision Runge-Kutta-Shanks integrat ion procedure 

described i n  paragraph D o f  th i s  chapter. The coeff ic ient  arrays rkscoeff 

and rkscoeff l  contain the high and low halves, respectively, of the Runge- 
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Kutta-Shanks coef f ic ien ts  i n  the  order required by the  procedures start 

and dshanks. The number o f  function evaluations rksfn i s  required by both - 
start and dshanks; t h e  order rksorder i s  required by dshanks. - 

The ar ray  cowellcoeff contains the  high halves of t he  coef f ic ien ts  o f  

(1-2), (1-3), and (1-4) i n  the order P 0’ P1, 0’ Pq’ co, cl, ‘ J  Cq’ 

cowellcoeffl  contains the  

The suggested i n i t i a l  

i n  the  zero posi t ion of t he  array.  

low halves i n  the same order.  

s t ep  s i ze  & i s  optional.  

The a r ray  

The procedure f irst  

sets c l  = 2 and doubles c l  u n t i l  c l  2 q ,  

h 

If  dx = 0 o r  dx # 0 and - - - I - 
1 dx I then c l  i s  l e f t  alone. 

Tne in tegra t ion  now begins. 

Otherwise, c l  i s  doubled u n t i l  h < 1 dx ‘1 - -  I u - -  

i s  computed. The start procedure i s  ca l led  t o  obtain 

e l  and c2 are  adjusted i f  h w a s  changed by the  start procedure. c2 i s  - 
decremented by q s ince q s teps  took place i n  the start procedure. If c2 c m, 

closing takes place. Otherwise, 

.- 14 
fm-1/2 

i s  calculated from 

49 



and y' using the mid-range formula (1-4) e m applications o f  (1-5) yie ld  m 

and n i s  set equal t o  9. 

For 1 < i < m the following s e t  of  s teps  takes  place. c 2  i s  decremented - -  
by 1, and xn+i i s  calculated.  

-14 ' fn+i-1/2 

i s  calculated from 

3 3 

and fn+i - l  using (1-5).  

f i s  calculated.  

Yn+i i s  calcuated using the  predictor (1-e), and 
4 3 

i s  next calculated using the corrector  (1-3), and 
' 'n+i n+i 

n+i 
-+ 

i s  again calculated.  Let be the  vector which i s  t h e  absolute value o f  
.-) 

the  difference between the  last two calculated values of  yn+io 

of  v i s  compared wi th  the  corresponding component of ea/(lO * - c lE  ) for  

Each component 
4 -* 

absolute e r ro r  and w i t h  the product o f  the  corresponding components of 

er/(lO '~12) - and the last c d c u l a t e d  value of ;n+i for  r e l a t i v e  e r ror .  
.-) 

4 

If any component of v exceeds i n  

tests, the  s teps  which ca lcu la te  
-3 3 

from the  value o f  y and fn+i n+i ' 
+ 

of yn+i are repeated. When each 

both the  absolute and the  r e l a t ive  e r r o r  

using the corrector  (1-3), calcuate 'n+i 
which t e s t  t he  last two calculated values 

component of v does not exceed i n  e i t h e r  

3 

4 

a A 

the absolute or t h e  r e l a t ive  e r r o r  test, the last values of y 

are retalned. 

and f n+i n+i 



The mid-range formula (1-4) i s  now used t o  ca lcu la te  a new value of 
3 

y from n 

and 

Let  v' be t h e  vector which i s  the  absolute value of t he  differences between t h e  
3 4 

new value of y and t h e  previously calculated value of yn. If su f f i c i en t  n 

h is tory  i s  avai lable  f o r  doubling the  s tep  size,  5. e., n > q + m, each 
3 

component of  v i s  compared w i t h  the corresponding component of 

ea/(lO cl-  0 2q+3) P 3 

f o r  absolute e r r o r  and with t h e  product of t he  
3 

corresponding components of er/(lO c l g  p3) and the  new value of y" n - 
f o r  r e l a t i v e  e r ror .  

3 

I f  each component of v does not exceed i n  e i t h e r  the absolute o r  t h e  

r e l a t i v e  e r r o r  tests, the  last m s teps  a re  accepted, - c l  and c2 are halved, 

and the  s t e p  s i ze  i s  doubled. If - c2 < m, closing takes  place. Otherwise 

becomes 

3 3 3 
3 

becoaes y , y becomes y x becomes x and, as i f  the  s t a r t i n g  Ym n-m g n+m' g n+m' 

procedure had calculated these values, control  re turns  t o  t h e  s t e . p  where 

- 14 
fm-1/2 

i s  calculated using the mid-range formula (1-4). 



If any component of v" exceeds i n  both the  absolute and t h e  r e l a t i v e  

e r r o r  t e s t s ,  t h i s  component and each untested component i s  canpared with the  
+ 

corresponding component of ea/(lO e c lg )  - f o r  absolute e r r o r  and with the  
4 

product of  t he  corresponding components of er / ( lO 

of yn f o r  r e l a t i v e  e r ro r .  

t he  absolute o r  the r e l a t i v e  e r r o r  t e s t ,  the  last m s teps  a re  accepted and 

- c lg )  and the  new value 
4 3 

I f  each component of v does not exceed i n  e i t h e r  

t h e  s tep  s i ze  

n becomes n + 
remains unchanged. I f  < m, c losing takes  place. Otherwise, 

m and control  re turns  t o  the  s teps  which ca lcu la te  

If any component of v" exceeds i n  both the  absolute and the  r e l a t ive  e r r o r  t e s t s ,  

the  last m s teps  a r e  re jected,  - e2 i s  incremented by m, - c l  and - c2 are doubled, 
3 4 4 

becomes y x becomes x and n, YO n' 0 n' and the  s tep  s i ze  i s  halved. fo becomes f 

cont ro l  i s  returned t o  the  s t ep  which c a l l s  t he  s t a r t  procedure. 

If su f f i c i en t  h i s to ry  i s  not avai lable  f o r  doubling, cont ro l  transfers 

as i f  the f irst  component of ;exceeded both the  f i rs t  component of 

za/(lO * - c l g  e 2q+3) and the  product of the f irst  components of 

er / ( lO 0 - clr! 0 2q+3) w i t h  the  first cmponent of the  new value of  yna 
3 4 

Closing takes place whenever m s teps  at the present s t ep  s i z e  would car ry  

the  in tegra t ion  beyond xf, i. e., whenever - c2 > 0, the Runge-Kutta-Shanks 

procedure i s  used t o  in tegra te  from the  present value of x t o  xf; i f  

- e2 = 0, the present value o f  x i s  - x f .  I n  e i t h e r  case, the  integrat ion i s  

now complete. 

Several eff ic iency measures are  employed i n  the program. F i r s t ,  the  
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coe f f i c i en t s  

and 

are  mult ipl ied by the s t ep  s ize  h and s tored as mult ipl ied unt i l  the s t ep  
-.t 3 

s ize  changes. Second, the vectors ea/(lO 0 - clg),  er/(lO * _. clE), 

e;/(lO * - cl2 2q'3), and ;r/(lO - c12 2q'3) are calculated from 
-.) 

ea  and 

e r  and s tored as calculated u n t i l  the s tep  s i ze  changes. Third, t he  

corrector  p a r t i a l  sum 

q 

i s  computed and s tored a t  each step; successive appl icat ions of t he  

corrector  only require  adding h Co f t o  obtain yn. Fourth, during 

applications of the  corrector,  two arrays are used t o  s tore  the last two 

calculated values of ;n; a f l a g  i s  used t o  mark the last calculated value 

so that  the next value I s  placed i n  the  unflagged ar ray  and the f l a g  i s  

3 -) 

n 

switched. This avoids t r ans fe r  from ar ray  t o  a r r ay  as successive corrector  

i t e r a t e s  are conputed. Fif th ,  cycl ic  indexing i s  used t o  avoid moving the  

function value h is tory  a f t e r  each s tep  or set of s teps  unless doubling 

takes place.  One unusual condition can r e su l t .  If,  during any s tep  

taken i n  computing 
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the number of times through the corrector  exceeds eight, cont ro l  t r ans fe r s  

as if the set of m steps has been completed and rejected,  i.e., a s tep  

s i ze  halving was ca l led  f o r  w i t h  a restart beginning at y . 4 

n 

3. Flow D i a g r a m  and Program ListIng 

Figure 3 i s  the  flow diagram f o r  t h e  Cowell method. The program 

l i s t i n g  follows at  the end of t h i s  section. 

4. Results and Conclusions 

Numerous results and conclusions applying t o  the  single-precision 

version of the procedure were discussed i n  [21]; these were again borne 

out i n  experiments performed using the double-precision version. Three 

s igni f icant  differences m i g h t  be noted, however. 

F i r s t ,  the  accuracy cutoff f o r  t he  single-precision version occurred 

when doubling required r e l a t i v e  e r ro r  estimates of around lo-’’. This 

cutoff f o r  the  double-precision version occurred when doubling required 

r e l a t i v e  e r ro r  estimates of around th i s  increase i n  possible 

accuracy i s  exact ly  the addi t ional  accuracy afforded by double-precision. 

Secondly, best r e su l t s  i n  s ingle  precision seemed t o  occur w i t h  

q = 4 o r  q = 6; best results i n  double precision seemed t o  occur with 

q = 10 or q = 12, the same as observed i n  [ll]. 

Thirdly, the matching o f  the Runge -Kutta-Shanks s t a r t i n g  procedure 
3 4 

t o  the  order q and the asked accuracy vectors ea and er  was more complex. 

The (5,5) Shanks formula seemed best  for q = 4,6 and 8 a t  a l l  accuracies 

asked and f o r  q = 10 and 32 at  those accuracies obtainable i n  s ingle  

precision. 

i n  s ingle  precision, the (7, 9)  Shanks formula seemed superior. 

However, f o r  q = 10 and 12 at  most accuracies not obtainable 

For the 
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highest accuracies obtainable i n  double precision f o r  q = 10 and 12, the  

(8, 12) Shanks formula seemed s l i g h t l y  be t t e r  than the  (7, 9) Shanks 

formula. 

(8, 12) formula appeared bes t .  

conclusive because of t he  lack o f  su f f i c i en t ly  extensive data. 

For q = 14 at a l l  accuracies requir ing double precision, t he  

However, results are not e n t i r e l y  

Results obtained f r a m  calculat ions of  t he  decaying exponential, - -  i .e ., 
y = -y, y(0)  = 1, show an unusual phenomenon. A s  increased accuracy i s  

asked, the  s tep  s i ze  may not change. Instead, the  corrector  may be used 

two o r  three times instead o f  once, and there  i s  a decrease i n  accuracy 

obtained. However, fu r the r  increases i n  accuracy asked eventually 

/ 

produce a decrease i n  s t ep  s i z e ,  a re turn  t o  only one pass through the  

corrector, and an increase i n  accuracy obtained. This seems t o  indicate  

t h a t  a fixed number of times throu& t h e  corrector,  followed by step-size 

control  based on the  difference between predictor  and f i n a l  corrector,  

should be used. (The Cowell procedure uses a var iable  number o f  times 

through t h e  corrector  and uses a mid-range formula tes t  for step-size 

control . )  It should be noted t h a t  t h i s  phenomenon i s  nDt present i n  

calculat ions of the  r e s t r i c t e d  three -body o r b i t s ;  the  o r b i t s  require 

both doubling and halving of  s tep  s i ze  and the  decaying exponential 

should only require halving. Moreover, t h e  decaying exponential error 

control  was re la t ive ;  the o r b i t  e r r o r  cont ro l  w a s  absolute.  

Decaying exponential results seem t o  show a reasonably l i nea r  

re la t ionship when function evaluations were p lo t ted  on a log-log scale  

as a function of e r ro r  obtained. This m u s t  be qua l i f i ed  by two 

statements. F i r s t ,  when the  l i m i t s  of t h e  accuracy of the  machine 
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were reached, the  curves turned upward v e r t i c a l l y  and gave a graphic 

exhib i t  of the  l imitat ions o f  the  machineo Secondly, the  graphs of ten 

s p l i t  i n to  two 3r three  branches. The branches were the r e s u l t  of the  

d i f fe ren t  number of times through the  correc%or, and each branch was 

l i n e a r  up t o  the  accuracy of the  machine. This l i n e a r i t y  seems t o  indicate  

tha t  there  i s  l i t t l e  build-clp of round-off e r r o r  as the  number o f  s teps  

(and, correspondingly, the  number of function evaluations) increases e 

However, the d i f fe ren t  branches seem t o  show tha t  addi t ional  times 

through the corrector do not always produce t h e  same e f f e c t  as a 

halving o f  s tep  s i ze .  

For the r e s t r i c t e d  three-body o r b i t s ,  the  e r ro r  obtained was always 

as good as the  e r ro r  asked; fo r  the decaying exponential, the e r ro r  

obtained was r a re ly  as good as the e r ro r  asked. Moreover, p lo t s  of 

e r r o r  asked as a function of e r r o r  obtained show t h a t  f o r  t he  o rb i t s  

the  curve i s  smoothly l i nea r  and for t he  decreasing exponential t he  curve 

i s  a w i l d  s tep- l ike function. 
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D . The Runae -Kutta-Shanks Method 

1. Introduction 

The procedure described i s  a general izat ion o f  t he  Runge-Kutta 

method f o r  solving a system of d i f f e r e n t i a l  equations. 

t o  an a r b i t r a r y  system of f i r s t - o r d e r  d i f f e r e n t i a l  equations of the  form 

It may be applied 

with the  i n i t i a l  conditions 

2. Description of the Method 

The Shanks Method i s  a s ingle-s tep procedure f o r  f inding a numerical 

so lu t ion  of a f i r s t - o r d e r  ordinary d i f f e r e n t i a l  equation o r  system of 

d i f f e r e n t i a l  equations i n  which the aer iva t ives  of the dependent var iables  

may be expressed e x p l i c i t l y  as functions o f  t he  independent and dependent 

var iab les .  

Consider the  system of d i f f e r e n t i a l  equation 

;'= I: <x,;> . 



Suppose the  value of (x)  i s  known. The value y' (x + h)  i s  approximated by 

. L A  i =1 

where 

i-1 .-) 

j=1 

4 4 -4 

f .  (x,h,y) = 'f' ( X  + ath, Y + h C p i j f j ) , i  = 2, 0 . )  m e  
1 

The coef f ic ien ts  CY. (i = 2, . . ., m),  
1 

p . .  ( i  = 2, . ., m; j = 1, . . ., i-l), and y i ( i  = 1, . . ., m) 
= J  

are chosen so as t o  make the  approximation correct  t o  some order. A 

spec ia l  case of the  Shanks formula i s  the  fourth-order Runge-Kutta formula: 

CY 2 = 1/2, CY3 = 112, CY4 = 1, 

For usef'ul values o f  the  various combinations of  a, p, and y, see Shanks [ 1. 

3. The Computer Procedure 

The procedure w a s  programmed f o r  t he  B-5500 computer i n  t h e  B-5500 

Algol language. 

used. This i s  a double-precision version o f  the  single-precision procedure 

described i n  the  previous report  [21]. 

Double-precision ari thmetic (22 decimal d i g i t s )  was 



3.1 Error Estimates and Step Size Control 

I n  t h i s  procedure a s ingle  s e t  of Shanks formulas i s  used. 
3 

Suppose a vector y (x)  i s  known. 

ax one s tep  o f  s ize  h (where h = - , Ax i s  the length of the  in te rva l ,  and 

c i s  a power of two), and t o  two s teps  of  s i ze  

Then the Shanks method i s  applied t o  

C 

as fol1ows: 2 '  

I 'ck"pk 1 Both y" and are  estimates of  y"(x+h). A n  e r ro r  estimate Ek = 
P 

E i s  calculated for each independent var iable  yk. 

Ek > ErklYckl for any dependent var iable  where E i s  an absolute e r r o r  

estimate, Erk i s  a r e l a t i v e  e r r o r  estimate, and p i s  an input parameter, 

If both Ek > - ak 
P 

ak 

and 
C 

,E 

then the s tep  i s  re jec ted  and the s t ep  s ize  i s  halved; otherwise the  s t ep  
4 4 

i s  accepted and y, i s  taken as the vector y (x+h). 

variable,  e i t h e r  Ek 

If f o r  every dependent 

< ErkJYckJ 
2(Jt.3)cP sf? Ek - ' m p  where j i s  the  order, < Eak 

then the  s tep  s i ze  i s  doubled. If the  s tep  s i ze  h i s  l a rge r  than the 

distance t o  the end o f  the in te rva l ,  then t h a t  distance i s  taken as 

the s tep  s i ze .  

3.2 Input and Output of the Procedure 

The procedure i s  ca l led  as follows: 

DSHANKS (N, X I ,  XIL, XF, XFL, YV, YVL, F, M, ORDER, CF, CFL, F, EA, ER, DX); 



where the parameters have the  following meaning: 

N - number of dependent var iables;  

X I  - high pa r t  of the i n i t i a l  value of the  independent variable;  

XIL - low pa r t  of the in i t ia l  value of the  independent variable;  

XF - high pa r t  of the f i n a l  value of t he  independent variable;  

XFL - low pa r t  of the f i n a l  value of the  independent variable;  

YV - ar ray  of  the  high pa r t s  of the i n i t i a l  values of the  dependerft 

variables,  based at  zero but w i t h  the  zero element not used; 

XVL - ar ray  of t he  low pa r t s  of the i n i t i a l  v8lues of the  dependent 

var iables  ; 

F - a function evaluation procedure, supplied by the  user, ca l led  as follows: 

F (N, X, XL, YV, YVL, FV, FVL); 

where N i s  the  number of dependent variables,  X i s  t h e  high par t  o f  the  

value of t he  independent variable,  XL i s  the low pa r t  of the value o f  

the independent variable,  YV i s  the a r r ay  of the  high pa r t s  of  the 

values of the  dependent variables,  YVL i s  the a r ray  of the low parts 

of the values of the  dependent variables,  FV i s  the a r ray  i n  which 

the high pa r t s  of the function values a re  placed, and FVL i s  the a r r ay  

i n  which the low pa r t s  of the function values a r e  placed; 

M - the  number of function evaluations i n  each appl icat ion of the Runge- 

Kutta -Shanks method; 

ORDER - the  order of the Shanks formulas used; 

CF - the a r ray  o f  the. high pa r t s  of  the Runge-Kutta-Shanks coeff ic ients ,  

s t a r t i n g  i n  the zero element arranged as follows: f o r  each i, the 

corresponding aipij's, followed by ai w i t h  the )iilS at the end; 
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CFL - t he  a r ray  o f  the  low pa r t s  of t he  Runge-Kutta-Shanks coeff ic ients ;  

P - an exponent used i n  s t ep  s ize  control;  

EA - an a r r ay  of absolute e r ro r s  asked; 

ER - an a r r ay  o f  r e l a t i v e  e r rors  asked; 

DX - a recommended s t a r t i n g  s tep  s i z e  (the ac tua l  s t a r t i n g  s tep  s i ze  

w i l l  be the  l a rges t  binary f r ac t ion  o f  the  t o t a l  i n t e r v a l  which 

i s  not la rger  than DX); 

The high and low pa r t s  o f  the  f i n a l  values of the dependent variables are 

stored i n  YV and YVL, respectively,  before ex i t i ng  the  procedure. 

4. Flow Diagrm and Program Lis t ing  

Figure 4 i s  the f low d i ag rm for the  Runge-Kutta-Shanks procedure. 

A l i s t i n g  of t he  program i s  given a t  the end o f  t h i s  section. 

5. Results and Concksions 

The Runge-Kutta-Shanks double-precision procedure w a s  f i r s t  used 

with the  three-body problem and the  input parameter p = 1/2, cont ro l l ing  

on absolute and relative e r r o r  simultaneously. 

A t  f irst ,  the  e r ro r  estimate Ek described i n  paragrag?l 3.1 above w a s  

computed as 

as had been done i n  single-precision experiments [Z?l]. However, it w a s  

found t h a t  f o r  some orders the  accuracy asked was not achieved. It w a s  

then decided t o  change the  e r ro r  estimate t o  
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I n  t h i s  case, the  accuracy asked w a s  cons is ten t ly  achieved, and f o r  some 

orders (6-6, 7-9, 8-10, 8-12) the  accuracy obtained was cons is ten t ly  

better than t h a t  asked. It was found tha t  fo r  thethree-body problem 

the  most accurate formulas were t h e  6-6 and 8-10, with the  7-9 and 8-12 

s l i g h t l y  l e s s  accurate, and the  4-4, 5-5, and 7-7 achieving only the  

accuracy asked. 

fast, t h e  5-5, 6-6, and 7-7 considerably slower, and the 4-4 extremely 

slow. 

su i tab le  f o r  double precision. It i s  recommended t h a t  only t h e  7-9, 

8-10, and 8-12 formulas be used i n  double-precision f o r  the  three-body 

problem. 

The 8-12 formula was fa s t e r ,  t he  7-9 and 8-10 almost as 

This indicates  t h a t  the c l a s s i c a l  Runge-Kutta 4-4 formula i s  not 

The procedure was then used with the  d i f f e r e n t i a l  equation y '= -y 

(i.e., t he  equation fo r  t he  negative exponential), using the  input 

parameters p = 0, p = 1/2, and p = 1, cont ro l l ing  on absolute and r e l a t ive  

e r ro r  separately.  

Controll ing on absolute error ,  the  procedure always achieved at least 

an order  of magnitude more accuracy than was asked, even with p = 0. 

Controll ing on r e l a t ive  error ,  the 4-4, 5-5, and 7-7 formulas sometimes 

f a i l ed  t o  achieve t h e  accuracy asked with p = 0 and. occasionally with 

p = 1/2. 

8-10 f o r  high accuracies. 

accuracies the 5-5 was a l s o  very slow. It i s  recommended t h a t  f o r  double 

precis ion the 4-4 and 5-5 formulas be excluded from consideration. 

In  most cases the  7-7 was f a s t e s t  for low accuracies and the  

Again the  4-4 was slowest. For t he  higher 

The 
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6-6 might a l so  be excluded, s ince it ra re ly  w a s  f a s t e r  than the  higher- 

order formulas. 

For high accuracies, it appears tha t ,  i n  general, t he  higher the  

order, the  more su i tab le  a set of formulas is ,  although t h i s  i s  not an 

absolute rule .  Between formulas o f  t he  same order, sometimes one 

might be more su i tab le  and sometimes t h e  other .  

was faster f o r  the negative exponential case and the  8-12 f o r  the  

three  -body problem. 

For instance, t he  8-10 

Further work remains t o  be done i n  t h i s  area. A wider range o f  

problems m i g h t  be considered f o r  experimentation with the  procedure. 

I f  a higher-order set o f  formulas i s  available,  it might be used. A 

procedure which selected an order, o r  which se l ec t s  s ingle  or double 

precis ion according t o  t h e  accuracy asked, m i g h t  be developed. Further 

experimentation i n  step-size control,  including the poss ib i l i t y  of 

continuous step-size control,  might be considered. 
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E. The General Multistep Method S ta r t ing  Procedure 

1. Introduction 

The general mult is tep method s t a r t i n g  procedure i s  a B-5500 AIXIOL 

double-precision Runge-Kutta-Shanks procedure used fo r  obtaining starting 

values for the  Adms, Butcher, and Cowell mult is tep methods. The declara- 

t i o n  i s  as follows: 

integer  procedure start (n, x i ,  x i l ,  xf,  xf l ,  c l ,  ea, er, f, m, x, 

x l ,  yiv, yivl ,  yh, yhl, fh, fhl ,  yfV, 

yfvl, cyi, cym, pa, p, fneval, rksconst, 

rksconst l )  ; 

value n, x i ,  x i l ,  xf, x f l ,  c l ,  m, cyi, cym, pa, P, fneval; 

integer  n, c l ,  m, cyi ,  cym, pa, fneval; 

r e a l  x i ,  x i l ,  xf, x f l ,  x, xl ,  p; 

r e a l  a r ray  ea, e r ,  yiv, yivl ,  yfv, yfvl,  rksconst, rksconst l  [ O ] ,  

Yh, Y h l ,  fh, f h l  co,o1; 
procedure f ;  

2. Description o f  the  Procedure 

The parameters of  the  procedure a r e  defined as follo-bTs: 

n - - the  number of dependent var iables  

xi, xil - the  high and low halves, respectively,  of the  s t a r t i n g  

value of the  independent var iable  x passed t o  the mult is tep method 

xf, x f l  - - t he  high and low halves, respectively,  o f  the f inal  value 

of the independent var iable  x passed t o  the multistep method 

- c l  - the  integer  counter (xf - -  - x i ) /h  from the mult is tep method 
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ea  - the  absolute e r ro r  vector passed t o  the  mult is tep method - 
e r  - t he  r e l a t i v e  e r r o r  vector passed t o  the  multistep method 

3 4  3 - f - the  procedure which computes f (x ,y)  = y 

m - - t he  number of h i s to ry  points t o  be calculated by s t a r t  

x,, xl - - the  high and low halves, respectively,  o f  t h e  value of the  

independent var iable  a t  which start begins i t s  in tegra t ion  

yiv, y i v l  - the  arrays which contain on en t ry  f o r  A d s  and Cowell 

the high and low halves, respectively,  of the values of t he  dependent 

var iables  at 5 and which contains on e x i t  f o r  Cowell t he  high and low 

halves, respectively,  of the values o f  t he  dependent var iables  at the 

m t h  - point calculated by s t a r t  

&, ;yhl - the  arrays which contain on en t ry  fo r  Butcher i n  row Cyi 

t he  high and low halves, respectively,  of the  values of  the  dependent 

var iables  a t  - x and which contain on e x i t  f o r  Butcher the  high and low 

halves, respectively,  o f  the  values of t he  dependent var iables  at  each 

of the  m - points calculated by start 

fln, - f h l  - the  arrays which contain on en t ry  i n  row t h e  high and 

low halves, respectively,  o f  the  function values a t  x - and which contain 

on e x i t  t he  high and low halves, respectively,  of the  function values at 

each of the  m - points  calcuated by start 

yfv, y f v l  - the  arrays which contain on e x i t  the high and low halves, 

respectively,  of the values of the  dependent var iables  at  the mth - point 

calcuated by start f o r  Adms o r  t he  d 2 t h  point calculated by - start 

f o r  Cowell 
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c& - the  cyc l ic  index indentifying on en t ry  the  row of  yh and & - 
i n  which the values of the  dependent var iab les  at  x a re  stored f o r  

Butcher and the row of fh and fhl i n  which t h e  function values a t  x are - - 
s tored  f o r  any method 

- the  number of rows i n  the arrays &, _yhl, fh, and f h l  

E - the  parameter which i s  zero for Adams, one for Cowell, two f o r  

- 

Butcher 

p - the  exponent such tha t  the absolute e r ro r  at  each s tep  i s  not t o  

exceed d c l g  and the  r e l a t i v e  e r ro r  at  each s tep  i s  not t o  exceed 4 c l E  - - 
fneval - the  number of function evaluations required by the Runge- 

Kutta-Shanks procedure 

rksconst, rksconst l  - the  arrays which contain the high and low halves, 

respectively,  of t h e  Rung-Kutta-Shanks coef f ic ien ts  i n  the  same order as 

required by the procedure dshanks described i n  sect ion D. 

The value of start on e x i t  i s  two t o  the  power of the  number of 

halvings which took place within start.  

Although the  base of the arrays ea, er, yiv, yivl ,  yfV, and yfk l  

and of the rows of & yhl, g, and - f h l  i s  zero, the n components a re  

placed i n  posi t ions 1, 2, e O 9  - n and the zero posi t ion i s  unused. 

The procedure attempts t o  ca lcu la te  m - (if  m - i s  even and posi t ive)  or 

m - f 1 (if  m i s  odd) Runge-Kutta-Shanks s teps  of s ize  h = (xf - - -  --xi)/cl* 

After each even s t ep  of s i ze  h i s  taken, one s t ep  of s i ze  2h i s  taken 

over the i n t e r v a l  spanned by the two s teps  of  s ize  h e  The absolute value 

o f  the differences i n  each dependent var iable  between the %-step and the  

second h-step i s  compared wi th  the  corresponding component o f  ea/(&2)2 
-B 
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f o r  absolute e r ro r  and with the product o f  the corresponding component of 

e r / ( c l /2 )g  _. 
4 and the  corresponding dependent var iable  value from the  second 

h-step f o r  r e l a t ive  e r ro r .  I f  each component of the.difference does not 

exceed i n  e i t h e r  t he  absolute or t h e  r e l a t i v e  e r r o r  t es t  and m s teps  have - 
not yet been taken, t h e  process of two h-steps, one 2h-step, and tes t  i s  

continued. If any component of t he  difference exceeds i n  both the  absolute 

and the  r e l a t i v e  e r r o r  t e s t s ,  - e l  i s  doubled, h i s  halved, and integrat ion 

begins at  x.  The f i rs t  s tep  o f  previous s i z e  h was saved and becomes the  - 
first  s t ep  of present s i ze  2h. 

The m - calculated function values from h-steps are placed i n  rows 

., ( cy i  + m )  mod - cym of the  (Cyi + 1) mod cym, (cy i  - + 2)  mod - cym, . . - 
ar ray  fh. For Butcher, the corresponding dependent var iable  values from - 
h-steps a re ,p laced  i n  the  corresponding rows of the  a r ray  yh; i f  m - i s  odd, 

t he  values o f  the  dependent var iable  a f t e r  h-step m + 1 are  placed i n  row 

(cyi  + m + 1) mod cym o f  yh. 

from h-step m a re  placed i n  the  a r ray  yfv. For Cowell, the  dependent 

var iable  values from h-step m are  placed i n  the  a r ray  y iv  and from 

h-step m/2 (m i s  always even f o r  Cowell) a re  placed i n  yfv. 

- 
For Adams, the  dependent var iable  values - -  - - 

- - 
- - 

If m i s  - - _I - 
zero, no calculat ion takes place.  

3. Flow Diagram and Program Lis t ing  

Figure 5 i s  the  flow diagram f o r  the  s t a r t i n g  procedure. The 

program l i s t i n g  follows a t  the end of t h i s  section. 
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111. THE EXECUTIVE PROCEDURE 

A. Introduction 

The executive procedure ac t s  i n  an administrative and supervisory 

capacity. 

methods a r e  t o  be used, but does none of t he  ac tua l  integrat ion.  The 

executive procedure uses as  subprocedures f i v e  basic  in tegra t ion  routines;  

these are:  

It does the  bookkeeping and makes the  decisions as t o  which 

a) The Adams -Bashforth-Moulton routine, 

b) The Stetter-Gragg-Butcher routine, 

e )  

d) The Runge-Kutta-Shanks routine, 

e )  

The Cowell constant Nth order difference routine, 

The start and r e s t a r t  routine 

(containing a separate Runge-Kutta-Shanks routine) . 
These f i v e  basic rout ines  do the  ac tua l  integrat ion.  A descr ipt ion of the  

single-precision subroutines i s  contained i n  [21] and w i l l  not be repeated 

here. Each of the double-precision routines i s  described i n  Chapter I1 of 

t h i s  report .  

The executive procedure works i n  the following way. When a c a l l  i s  m a d e  

i n  the procedure t o  integrate  from point a t o  t h e  point b, t h i s  i n t e rva l  i s  

divided in to  eighths.  The f i rs t  eighth of the  i n t e r v a l  i s  integrated by one 

method f o r  each of two d i f f e ren t  orders, and the  time taken by each recorded. 

The second eighth i s  integrated by another method, a l so  f o r  two d i f f e ren t  

orders, and the  times recorded. The winners then compete against  each other  

over t h e  next fourth of the in te rva l .  That is ,  t he  f a s t e r  order of the  first 
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method and the f a s t e r  order of the  second method a re  both used t o  in tegra te  

the  second fourth of the in te rva l ,  and the  t i m e  taken by each recorded. The 

f a s t e r  method of these  two is  then presumably t h e  best  (fastest) of the  fmr 

t r i e d ,  and it is  used alone t o  in tegra te  over t h e  las t  half  of the in te rva l .  

A l l  of t he  times measured above a r e  then logged i n  the cumulative h i s to ry  

f i l e  of the appropriate problem type with the  winners and losers  noted. 

This f i l e  then i s  used as the  bas i s  of se lec t ing  which methods and orders 

a r e  chosen each time, i n  such a way t h a t  the  pas t  performance of the  

d i f f e ren t  methods and orders influences the  choice of which a r e  allowed 

t o  compete. 

B. The Select ion Process 

There a re  four methods avai lable  f o r  the  integrat ion process, and within 

each method there  a r e  fmr orders available.  Those f o r  the single-precision 

program a re  as follows: 

a )  

b)  

e )  

d )  Shanks formulas with orders 4-4, 5-5, 6-7, 7-9. 

Adams method w i t h  orders 5(4), 6(4), 7(4),  8(5), 

Butcher formulas with orders 5(4), 7(4), 9(4), 9(5), 

Cowell method with orders 7(5) ,  9(5), ll(5), 11(4), 

Each order of each multistep method has an associated Runge-Kutta-Shanks 

r e s t a r t  procedure order given i n  parenthesis a f t e r  the method order. 

on these methods a r e  given i n  [21]. 

has severa l  addi t iona l  orders of each method, but the  single-precision 

program i s  now s e t  t o  use ju s t  those mentioned above. 

Detai ls  

The d isk  f i l e  containing the coef f ic ien ts  

The methods and orders f o r  the  double-precision program a r e  
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Adams: 1U7L W 7 ) ,  14(7), 15(7), 

Ewhher: 7(7), 9(7L U 7 ) ,  13(8), 

Cowell: U 5 L  13(7), 15(7), l7(7)1 

Shanks: 6-7, 7-9, 8-10, 8-12. 

The se lec t ion  process i s  the  following. The f irst  of two methods is 

chosen a t  random from among the  three  most successful avai lable .  The 

method showing the  best  h i s tory  of success among the  remaining methods 

i s  chosen a s  the  second method, with the  cumulative his tory f i l e  being 

used t o  determine the  degree of success. Then within each method the same 

kind of se lec t ion  process w i t h  respect t o  orders i s  used. That is, the 

f i r s t  order i s  chosen a t  random, from the  three  most successful and the  

second order i s  chosen on the  basis  of which of t he  remaining has been 

the  most suocessful ( f a s t e s t  running) order of t h a t  method. 

seen t h a t  the  past  performance of t he  d i f f e ren t  methods and orders 

influences the  choice of which a re  allowed t o  c3mpete, such t h a t  t he  

more successful have a higher probabi l i ty  of being selected.  

Thus it i s  

I n  using the  time as  the sole  estimate of performance efficiency, it 

i s  assumed t h a t  a l l  orders and methods have s a t i s f a c t o r i l y  m e t  the  accuracy 

requirements. The accuracy requirements of  each method are  met by cont ro l l -  

ing s t ep  s i ze  and making e r ro r  estimates a t  each s tep.  The method of e r ro r  

estimate i s  d i f fe ren t  fo r  the  d i f f e ren t  methods. I n  the  Runge-Kutta-Shanks 

s ingle  s t ep  method, t h e  e r ro r  i s  estimated by taking two half  s teps  and 

then a whole s tep.  I n  the  Adam and Butcher methods the  difference between 

predictor  and corrector  i s  used. 

i s  used. 

I n  the  Cowell method a mid-range formula 
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C. Organization o f  t he  History F i l e  - - 
The h is tory  of the  effectiveness o f  each method i s  recorded i n  a disk 

Problems f i l e  with a separate h is tory  associated with each problem type. 

are c l a s s i f i e d  in to  twelve types based on three c l a s s i f i ca t ions  

The f irst  c l a s s i f i ca t ion  i s  according t o  t i m e  taken for a function 

evaluation. ,This time i s  e i t h e r  long or short  compared t o  the  estimated 

t i m e  taken t o  evaluate the  sums of products for a typ ica l  method; there  

are two divisions i n  t h i s  categoryo 

The second c l a s s i f i ca t ion  i s  according t o  number of dependent 

variables;  there  a re  two divisions i n  t h i s  category. If the  number of 

var iables  i n  the  d i f f e r e n t i a l  equations t o  be integrated i s  s i x  or l ess ,  

t h i s  i s  considered a llsmalllf number o f  var iables ,  If there  are more than 

s i x  variables,  t h i s  i s  considered a "large" number o f  var iables .  This 

divis ion i s  more or l e s s  a rb i t r a ry  and could be changed e a s i l y ,  

The th i rd  c l a s s i f i ca t ion  i s  according t o  accuracy. There are three 

-3 -3 e r r o r  ranges, For the  singleaprecision program these are > 10 10 

-6 t o  10 , -6 -8 -8 -14 < 10 ; fo r  double precis:i.on these are > 10 , 10 t o  10 , 
- 14 

< 10 These correspond roughly t o  low, medium and high accuracies f o r  

t he  corresponding precision, 

The two time division, two number o f  variable divisions, and three 

accuracy divisions form the  twelve types,  A complete and separate h is tory  

f i l e  i s  kept f o r  each of the problem types. 

The h i s to r i e s  s r e  recorded i n  the following manner. Associated with 

each order o f  each method are two numbers, 

records the  time associated with t r ia ls  i n  which t h i s  order w a s  the  winnero 

The f irst  (a posi t ive number) 

The second (a negative number) records the t i m e  associated with t r ia l s  
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i n  which it was the loser .  The sum of these two numbers i s  taken as t h e  

"score" or performance number and w i l l  be greater i f  the order of t h i s  

method has been a consis tent  winner and w i l l  be less (more negative) i f  

it has been a consis tent  loser .  

Associated with each method then i s  a method score analogous t o  t h e  

order scores j u s t  described. That i s ,  each method has one pos i t ive  and one 

negative number recording the t i m e  spent winning and los ing  respectively.  

I n  addi t ion t o  t h i s ,  a h is tory  i s  a l s o  kept of which methods t h e  wins and 

losses  were against ,  but t h i s  pa r t  of the  h i s to ry  i s  not used i n  se lec t ing  

competitors. 

The h i s to ry  f i l e  can be pr inted and punched by the  program ca l led  

WRITE HISTORY FILE. 

C.) I n  d e s x i b i n g  the output of t h i s  program, use w i l l  be made of an 

abbreviated notation. A stands f o r  Adams method, B for Butcher, C f o r  

Cowell, and S f o r  Shanks formulas. A number given following t h e  l e t t e r  

designates the order of t h a t  method where 1 stands fo r  t he  lowest order 

available,  2 f o r  the  next lowest, e t c .  Thus A3 stands fo r  the second 

highest order Adams method. 

designates winning t i m e  or los ing  t i m e  f o r  t h i s  method-order. 

example, B2 designates winning t i m e  f o r  Butcher's method, second 

lowest order; C-  designates losing t i m e  for  Cowell's method; e t c .  

Finally,  i f  a l e t t e r  follows the  s ign i n  parenthesis, t h i s  designates 

which method the  win o r  loss was against;  thus 3 (A) designates winning 

time by Butcher against  Adams. 

the  h is tory  f i l e  i s  as follows: 

(This program i s  described i n  Chapter IV paragraph 

A s ign following the  l e t t e r  or number 

For 

+ 

f 

With t h i s  notat ion the organization of  



The f irst  three items (pr inted on the first l i n e  of the  output of t h e  

The f irst  number h i s to ry  f i l e )  are  not t i m e s  but other  bookkeeping i t e m s ,  

gives the  date ( i n  the form year, day) t h a t  t h i s  par t icu lar  h i s tory  f i l e  

was i n i t i a l i z e d  or last updatede The second number gives t h e  t o t a l  number 

of  t i m e s  the  procedure has been ca l l ed  (using th i s  pa r t i cu la r  h i s to ry  f i l e ) ,  

The t h i r d  number gives the present value of t he  random number used i n  

generating t h e  random :lumber sequence 

Following these three  numbers come the  cumulative t i m e s  the  various 

methods spent winning and losing. 

matrix. 

each method; t ha t  is, the r e su l t s  of the competitive tr ials over the 1/8 

sect ions of the  range o f  integrat ion,  Table I gives t h i s  organization i n  

terms of  the  notation described above 

These a re  organized i n  a 9 row, 8 column 

The first  4 rows give wins and losses  of the  various orders within 

Following t h i s  i s  a row giving cumulative winning and los ing  times by 

methods; tha t  i s ,  t h e  r e su l t s  of  the tr ials over the 1/4 sections of the 

range of integrat ion,  T h i s  row i s  organized: 

A+ 
- 

A B+ 
- 

B C+ C -  Sf s a  

The last four rows give a more detailed breakdown o f  the l i n e  above, giving 

the method against  which the  winning and losing times were made. 

organized as the Table IIB It i s  noted here t h a t  en t r i e s  of t h e  form 

A'(A), B-(B), C?f?), ete, w i l l  a l l  be zero, since methods do not compete 

against  themselves e 

It i s  



ORGANIZATION OF CUMULATTVE WINNING 
AND LOSING TIMES BY METHOD AND ORDER 

A l +  A l l  A2+ A2- A3+ A3- A4' Ab' 

B1+ B1- B2' B2- 333' B3 - B4+ B4- 

C l +  c1- c2" C2- c3+ c3- c4-I- c4- 

Sl+ S1- S2+ 52 - s3+ s3- s4+ s4- 

Notation here: A = Adam, B = Butcher, C = Cowell, S = Shanks; 

1 = lowest order, 2 = second lowest order, e tc ;  

-I- stands for win, - stands for loss. 
- 

TABLE I1 

ORGANIZATION OF CUMULATIVE VINNLNG 
AND LOSING TIMES BY METHOD VS. METHOD 

A+(A> A-(A) B+(A> B-(A) c+(A> c-(A) s+(A> s-(A) 

A+(B) A-(B) B+(B) B-(B) c+(B) c-(B) s+(B> s-(B) 

A+(C) A-(C) B+(C) B-(C) C+(C) C'(C) S+(C) S-(C) 

A+(S) A-(S) B+(S) B-(S) C+(S) C-(S) S+(S)  S - ( S )  

Notation here: A = Adams, B = Butcher, C = Cowell, S = Shanks; 

+ stands for win, - stands for loss. 

A+(S) stands for A d a m  win against  Shanks, 

C-(B) stands for Cowell loss against  Butcher, e t c .  

Ent r ies  o f  t h e  form A+(A), or C'(C) etc., should a l l  be zero since a 

method does not compete against  i t s e l f .  



De Inputs t o  the  Executive Procedure 

1, The Single-Precision Program 

A c a l l  on the  single-precision executive procedure would look 

l i k e  the  following: 

DIFEQINT (N, X I ,  XF, Y p  F, Pp EA, ER, DX) 

Rere the  iden t i f i e r s  i n  parenthesis a re  the  inputs t o  the procedure and 

represent the following information: 

N i s  the  number o f  equations i n  the  system t o  be integrated,  

X I  i s  the i n i t i a l  value of the  independent variable, 

XF i s  the f i n a l  value of t he  independent variable,  

Y i s  the  i n i t i a l  value of the dependent variable,  Y i s  a 

vector (one-dixensional array)  

i s  set t o  the  f i n a l  valuzs of the dependent variable;  t h a t  is, Y i s  a l so  

the  output var iable  e 

A t  the conclusion of the procedure, Y 

F i s  the procedure f o r  calculat ing dy/dx as a function o f  x and 

y. 

d i f f e r e n t i a l  equations being integrated,  

four parameters: 

This procedure must be wr i t ten  by the user and describes the  system of  

It must be wr i t ten  so as t o  have 

a )  E, the  number of equations, 

b) X, t he  independent variable,  

c )  

d )  

Y, the  dependent var iable  (vector),  

FVp the  vector values o f  dy/dx at  the  point x, yo 

The first  three parameters a re  input and FV i s  the  output. 

P i s  the e r r o r  accumulation parameter, This parameter expresses 
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the  use r ' s  opinion as t o  how the e r ro r s  axe going t o  accumulate over t h e  

rayge of integrat ion.  For example, i f  it i s  expected tha t  the  e r ro r s  w i l l  

be random then P would be s e t  t o  0.5. 

w i l l  accumulate l i n e a r l y  then s e t  Pkl. These a r e  the two most usual 

cases but other s i t ua t ions  ciw occur. 

If it i s  expected that t h e  e r ro r s  

EA i s  the  absolute e r r o r  vector.  This vector gives the acceptable 

absolute e r ro r s  i n  the  value of  Y f i n a l .  

ER i s  t he  r e l a t i v e  e r r o r  vector.  This vector gives the  accept- 

able r e l a t i v e  e r r o r  i n  the  value o f  Y f i n a l .  It i s  the weaker o f  the  two 

conditions EA and ER that i s  met fo r  each component of the vector Y. 

DX i s  the  estimated value of the  i n i t i a l  s tep  s i ze .  This 

estimate need not be espec ia l ly  accurate s ince t h e  individual  methods 

w i l l  ad jus t  tne s tep  s i ze  t o  the appropriate value. 

2. The Double-Precision Program 

A c a l l  on the  double-precision procedure would look l i k e  the 

following : 

DIFEQITJT (N, X I ,  LXI, XF, LYF, Y, LY, F, P, Ell, ER, DX) 

Here the  i d e n t i f i e r s  i n  the parenthesis a r e  the  inputs t o  t he  procedure 

and represent the  fol loving information: 

N i s  t h e  number of equations i n  the  system being integrated.  

X I  and LXI a re  high pa r t  and low pa r t  of the double-precision 

i n i t i a l  values of the independent var iables .  

XF and LXF a re  the high and low pa r t s  of the f i n a l  values of 

the independent var iable  e 



Y and LY are the  high and low p a r t s  o f  the  i n i t i a l  value of the  

dependent variable vector ,  This i s  a l so  the  output vector. 

F i s  a procedure for ca lcu la t ing  dy/dx as a f’unction of x and ym 

This procedure must be m i t t e n  by the  user and describes the  system of  

d i f f e r e n t i a l  equations being integrated,  

have the  following parameters: 

It must be wr i t ten  so as t o  

a )  

b) 

c )  

N, the  number of  variables,  

X and IX, t he  high and low pa r t s  of the independent variables, 

Y and LY, the  high and low p a r t s  of the  dependent variable 

(vector) , 
FV and W, the high and l ~ w  p a r t s  o f  dy/dx at the point 

x, Y e  

d)  

A c a l l  on the procedure E’ would look l i k e  F (N, X, LX, Y, LY, FV, LFV). 

The f irst  f ive  parameters are  input and the last  two are  output,  

P, EA, ER, and DX are e r r o r  accumulation parameter, absolute 

e r r o r  vector, r e l a t ive  e r ro r  vector, and suggested s t a r t i n g  s t ep  s i ze  

These parameters a re  given i n  s ingle  precis-;.on only and a re  iden t i ca l  

t o  the corresponding parameters i n  the  s ingle  precis ion version (see 

page 107) e 

Ee Updating of the History F i l e  and Forgetting 

The t i m e s  recorded i n  the h is tory  f i l e  a re  cumulative, That is, after 

a competition i s  held, t he  times taken 5y the competing methods and orders 

are added t o  ( fo r  a win) or subtracted from ( f o r  a loss) t h e  appropriate 

posi t ions i n  the h is tory  f i l e ,  Thus, the e n t r i e s  i n  the h is tory  tab les  

represent an index expressing the  cumulative past  performance, 
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Decisions as t o  which method o r  order within a method i s  considered 

t o  have the best  performance h i s to ry  a re  made on the  basis of the  sum of 

t h e  win and loss e n t r i e s  f o r  that method o r  order. The method o r  order 

having t h e  maximum value for  th is  sum i s  aonsidered t o  have best  h i s to ry  

(remembering tha t  t he  loss e n t r i e s  a r e  negative).  

the  h i s to ry  f i l e  i s  used i n  the decision making process; i n  par t icu lar ,  

those e n t r i e s  i n  Table I1 are  not used i n  decision making but a r e  recorded 

only t o  give the user a more detailed account of  t h e  comyetitions. 

One notes that not a l l  

One fur ther  feature  i s  introduced in to  the  learning process and th i s  

i s  the gradual "forget t ing" of events i n  the more d i s t an t  pas t .  

accomplished by multiplying those h i s to ry  scores used i n  the  decision 

making by a fac tor  less than one, just before the  most recent h i s t o r i e s  

a re  added. This causes the events i n  the  d i s t a n t  past  t o  have l e s s  

influence than those more recent i n  determining the performance figure of 

an order and method. 

would be the optimum fac tor .  

described i n  Table I1 do not involve forge t t ing .  

a re  not used i n  any decision making process but .only tabulated f o r  t h e  

use r ' s  i n t e re s t ,  forge t t ing  would serve no p r a c t i c a l  purpose here. The 

en t r i e s  i n  Table I1 thus represent a t o t a l  or unattenuated h i s to ry  o f  t he  

This i s  

The fac tor  used i s  0.98 but it i s  not known what 

Mote that the  e n t r i e s  i n  the  h i s to ry  f i l e  

Since these e n t r i e s  

competition between the  various methods. 

F. Reading of  Coefficients and History F i l e s  

Also needed as input t o  t he  executive routine a re  the t ab le s  of  

coef f ic ien ts  associated w i t h  t he  various methods and the  past  performance 



h i s to ry  f i l e s ,  The coeff ic ients  a r e  read i n  by t h e  pri 

t i m e  the  procedure i s  ca l led  and a f l ag  set t o  indicate  t h a t  these have 

been read i n  once; they  are stored i n  an a r r ay  declared W N  and need not 

be read i n  again during the  operation of  the  program, 

lure t h e  f i rs t  

The coef f ic ien ts  a re  s tored on a disk f i l e  ca l led   TAPE^^^"^ It 

contains the  following coef f ic ien ts :  

a)  Adams' method, orders 4 through 19, 

b) Butcher's formulasg orders 3, 5, 7, 9, 11, 13, 

c )  Cowell's method, orders 7, 9> 11, 13, 15, 179 lgp  

d )  Shanks formulas, orders 4(4), 5(5)>  6(7)p 7(7)97(9)j  8(10), 8(12). 

0:ily four orders of each method a re  ac tua l ly  used i n  each program, 

The h i s to r i e s  f o r t h e  sin&-precision program are s tored i n  a disk 

f i l e  ca l led  "REMOTE" "A931S*", and those a f  the  double-precision program 

are stored i n  a f i l e  ca l led  "REMOTE" ''A8313C3CD" e 

procedure i s  ca l led  the  h is tory  associated with the  appropriate problem 

type i s  read i n  from t h e  disk, 

Each time the  executive 

G e  Outputs of the  Executive Procedure 

The executive procedure returns  t h e  f i n a l  value o f  the  dependent 

var iable  as i t s  pr inc ipa l  outpxt. This i s  ryturned through the  same 

variable,  the vector Y (or Y and LY i n  double) described i n  inputs t o  

the  procedure, paragraph D o f  t h i s  chapter,  

There are  several  other types of  output that are  pr inted,  Printed 

i n  the  f i l e  ca l led  "HISTORY" i s  a p a i r  o f  numbers giving t h e  method and 

order that i s  about t o  be used and the t i m e s  f o r  each order and method 
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a f t e r  the comparisons have been made. This information i s  pr inted i n  a 

two d i g i t  code, t h e  first d i g i t  representing the  method and the  second 

(if present)  ind ica t ing  the order.  The method code is:  

0 represents Adams, 

1 represents Butcher, 

2 represents  Cowell, 

3 represents Shanks. 

The order code i s  such t h a t  0 represents  the lowest order,  1 represents  the 

next lowest order, e t c .  

Also pr inted i n  the  f i l e  "HISTORY" are  the r e s u l t s  of comparison muls 

i n  which the r e s u l t s  (values of t he  dependent var iab le)  of the two competing 

method orders d i f f e r  by more than twice the a lbwed e r r n s .  

a r e  the i n i t i a l  and final values of t he  independent variable,  t he  two 

d i f f e r ing  values of t h e  dependent variables,  and an in teger  t e l l i n g  which 

component of the dependent var iable  appears t o  be i n  e r ro r .  

Also pr inted 

Other messages associated with anomolous conditions a re  a l so  pr inted 

i n  t h i s  f i l e .  

s tep  s i ze  collapses.  Recovery from s t ep  s i ze  collapse can usual ly  be 

effected,  but the message "INTEGER O V E R F W "  w i l l  be pr inted i n  f i l e  

"HISTORY" whenever it occurs 

I n  pa r t i cu la r  an in teger  overflow condition occurs i f  the  

Finally,  the  procedure outputs the  updated performance h i s to ry  by 

wr i t ing  it back in to  the  appropriate f i l e  on the disk.  

H e Flow D i a g r a m  and Program Lis t ing  

Figure 6 i s  the  flow diagram f o r  t he  executive procedure. (The flow 

diagrams f o r  t h e  s ing le  and double precis ion are e s s e n t i a l l y  the  same). 
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The program l i s t i n g s  for both the  s ingle  and double-precision version of 

the  executive procedure follow a t  the  end o f  t h i s  seekion.., The l i s t i n g s  

of the individual methods and restart programs are given i n  t h e i r  "squeezed" 

form. The double-precision versions o f  t he  individual  methods are a l s o  

given (unsqueezed) a t  the  end of t h e i r  respective sections i n  t h i s  report .  

The squeezed Adams procedure l isted here i s  not  an exact copy o f  t he  

unsqueezed version l i s t e d  a t  the  end o f  sect ion A, chapter I1 but i s  

equivalent t o  the UEB = FALSE i t e r a t i o n  cont ro l  option described there .  

The single-precision individual  methods are a l so  given (unsqueezed) i n  

reference [211. 
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I V m  AUXILIARY PROGRAMS 

There are f i v e  auxi l ia ry  programs needed t o  use the  integrat ion 

procedure. There a re  several  p r o g r m  f o r  s e t t i n g  up the  needed d isk  

f i l es  i n i t i a l l y  and programs f o r  dumping the  h is tory  f i les  from t h e  disk. 

A. The Coefficient F i l e  

The f i l e  of the  coef f ic ien ts  i s  created by a program cal led CREATE 

COEFFICIENT FILE. This program reads i n  the  coef f ic ien ts  as r a t iona l  

numbers from cards and wri tes  them i n  the  disk f i l e  as double-precision 

r e a l  numbers i n  a form suitable f o r  use by e i t h e r  the s ingle  o r  double- 

precision programs. The program l i s t i n g  and the  coef f ic ien ts  i n  r a t iona l  

form are given at  the  end of t h i s  chapter. 

B. Set t ing  Up History F i l e s  - 
The h i s to ry  f i l e  i s  created by a program ca l led  CREATE HISTORY FILE. 

This program reads i n  a h is tory  f i l e  from cards and writes it on the  

disk f i l e .  There are two such programs, one fo r  t he  single-precision 

h is tory  f i l e  and one f o r  the  double precision. The only difference i s  

that  the double-precision f i l e  i s  ca l led  llRENOTE" 11~831-mc~" and t he  

s ingle  precision f i l e  i s  ca l led  "REMOTE" "A83G**". A t  the  end of t h i s  

chapter, the  single-precision program fo r  c rea t ing  the  h is tory  f i l e  i s  

l i s t ed  together w i t h  a sample input his tory.  The double-precision 

program would be iden t i ca l  except for the  disk f i l e  declaration which 

would be 1 1 ~ 8 3 1 * ~ ) "  ics tead of 11~831s-11 - 



C. Pr in t ing  of History F i l e s  - 
The program ca l led  WRITE-HISTORY FILE w i l l  p r i n t  and punch on cards 

the  h is tory  f i l es  " ~ 8 3 1 ~ ~ "  o r  "A831S)(-tcl', which are on disk.  

on the  punched cards i s  t h a t  needed for  input by program CREATE HISTORY 

The format 

F I U  f o r  c rea t ing  these f i l e s .  The program f o r  dumping t h e  single-precision 

h i s to ry  f i l e  i s  l i s t e d  at  the  end of t h i s  chapter.  The double-precision 

program d i f f e r s  from the  s ingle  only by using the f i l e  name "~831*~" for 

"~831s~c~c" i n  the  disk f i l e  declaration. 
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V* FXSULTS AND CONCLUSIONS 

A. Applications 
I- 

Three types of  problems were used t o  exercise t h i s  integrat ion 

procedure. The f i r s t  type i s  the Arenstorf o r b i t s  of the r e s t r i c t e d  

three body problem. The second i s  the  system of l i nea r  d i f f e ren t i a l  

equations associated with Fourier transforms. The t h i r d  type i s  the  

system of l i nea r  equations obtained from a d iscre t iza t ion  of  the  p a r t i a l  

d i f f e r e n t i a l  equation f o r  the v ibra t ing  s t r ing .  

characterized by the  necessi ty  of frequent s tep-s ize  change. The other 

two types are characterized by having a large number (20 t o  100) o f  

coupled equations. The accuracy range studied das t o  10 . 

The f irst  of these i s  

- 18 

B. Results -- 
The executive routine performed qui te  s a t i s f ac to r i ly .  Learning took 

place as w a s  desired, t he  procedure adapting readi ly  t o  each problem type. 

All integrat ion methods performed well .  For a given problem type one 

par t icu lar  method and order usually dominated, but which one proved 

superior depended on t h e  problem type. For exmple,  the Runge-Kutta-Shanks 

formulas were usually f a s t e r  fo r  problems where frequent step-size change 

was required and large e r ror  tolerances were acceptable, but t he  multi-  

s tep  methods performed be t t e r  where s m a l l  e r ror  tolerances were required 

or where long runs of  uniform s tep  s i ze  were appropriate. Example 

h i s to r i e s  f o r  four representative problem types are given i n  Tables 

111 t o  V I .  

Other r e su l t s  concerning ef fec t ive  use of step-size and e r r o r  control,  and 



vs 

o 

Adams 

Butcher 

Cowel l  

Shanks 

-10834 

TmLE 111 

ExAMpL;E HISTORY OF COMPETITIONS BETWEEN mTHODS 

* 
7138 

Adam 

* 
0 

W 

* 
0 

4388 

0 

L 

* 
0 

-14241 

0 

Butcher 

w 
0 

-- 

* 
5908 

0 

L 

0 

* 
-15101 

0 

Cowell 

10573 -5036 

10017 - 6490 

Runge -Kutta 

* I  * 
The en t r i e s  i n  the  t ab le  represent net times ( i n  1/60 sec) spent winning 

o r  losing (+ for win, - f o r  loss) against  each opponent. The problem type 

represented here is: 

s h w t ,  and an e r r o r  tolerance between lom6 and 

competitions are represented here.  

greater  than 6 equations, time f o r  a function evaluation 

202 s ingle  precision 

188 



TABLE ITJ 

EXAMPLE HISTORY OF COMPETITIONS BETWEEN METHODS 

vs 

Rdams 

Butcher 

Cowell 

Shanks 

W 

* 
0 

0 

142 

L 

* 
0 

0 

-1478 

w L 

0 0 

--* 

* * 
0 -560 

0 -1490 

Butcher Cowell 

W L 

0 0 

71 0 

++ * 
43 -1576 

271 

1005 

Runge-Kutta 

0 

-46 

* * I  
The en t r i e s  i n  the tab le  represent net times ( i n  1/60 sec) spent winning 

and los ing  (+ f o r  win, - for loss) against  each opponent. The problem 

type represented here i s :  6 or l e s s  equations, time f o r  a function evaluation 

long, and an error tolerance < 10 . 47 s ingle  precision competitions are 

represented here. 

-6 



vs 

A d a m  

Butcher 

Cowell 

Shanks 

The 

A d a m  Butcher Runge -Kutta Cowell 

W L I W  L W L W L 

0 2634 0 0 0 

* 2531 -1294 0 0 

-3595 * * 0 -3229 

0 1811 0 * * 

L W L W L 

0 2634 0 0 0 

* 2531 -1294 0 0 

en t r i e s  i n  the t ab le  represent net times ( i n  1/60 see) spent winning 

and losing (+ f o r  win, - f o r  l o s s )  against  each opponent. The problem 

type represented here is: 

evaluation large, and an e r r o r  tolerance - a 1 0  . 30 double precision 

competitions a re  represented here. 

6 o r  less equations, t i m e  f o r  a function 

-8 



TABLE VI 

EXAMPL8 HISTORY OF COMPETITIONS BEX'WEZN METHODS 

vs 

Adams 

Butcher 

Cowell 

Shanks 

I Adams 

W , L  

* * 
0 -3605 

0 0 

0 0 

0 

o 

0 

* 

Butcher 

W L 

0 

-5218 

0 

* 

2378 

* 
1889 

1652 

Cowell 

0 

* 
-974 

0 

0 

738 

0 

-2601 

Runge -Kutta 

w L 

* 
0 

* 
0 

The en t r i e s  i n  the  t ab le  represent net  times ( i n  1/60 sec) spent 

winning or losing (+ f o r  win, - for loss) against  each opponent. The 

problem type represented here is:  

function evaluation long, and an e r r o r  tolerance between LO and 10 . 
19 double precis ion competitions a re  represented here. 

6 or less equations, time for a 
-8 -14 



tes ts  o f  accuracies and eff ic iency as a function of order f o r  the  

individual  methods are discussed i n  Chapter I1 i n  the  sect ions 'descr ib-  

ing  tha t  method. 

C . Conclusions 

The r e s u l t s  j u s t i f y  the  conclusion t h a t  t he  present programs would 

be su i tab le  and ef fec t ive  as a general l i b r a r y  programs f o r  in tegra t ing  

systems of d i f f e r e n t i a l  equations. 

method or order i s  exceptionally superior t o  a l l  the  others.  Depending 

on t h e  accuracy and the problem, d i f fe ren t  methods and orders a re  best .  

The executive routine does an ef fec t ive  job of  f inding a good method and 

order for each individual problem type. 

It w a s  evident t h a t  no par t icu lar  

D. Recommendations f o r  Further Study 

Improvements o r  modifications t o  the present program and addi t ional  

tasks  t h a t  would be fruitful a re  as follows: 

The c l a s s i f i ca t ion  mechanism of the  present program c o u l d  be sharpened 

and expanded. For example the  c l a s s i f i ca t ion  could take into account the 

came of  the person or organizational element submitting the problem and 

keep h is tory  f i l e s  based on t h i s  addi t ional  information. 

Hybrcdization o f  the  s ingle  and double-precision procedures in to  

one procedure that  allows the  program t o  make the decision about when t o  

use 

w i t h  present computer languages .) 

single  and when t o  use double. (This  may be d i f f i c u l t  o r  awkward 

Other integrat ion methods [19] could be added to ,  or replace some of, 

the  methods now i n  use and t e s t s  made t o  evaluate t h e i r  effectiveness.  



This or a s i m i l a r  program could be converted t o  other  machines 

(such as the  Univac 1108) 

a l so  be machine dependent,and t h i s  should be studied. (Since the  procedure 

i s  i n  Algo1,its conversion t o  other hardware should be r e l a t i v e l y  straight- 

forward. ) 

The relative eff ic iency of t he  methods might 

It would be of i n t e r e s t  t o  make t h i s  program avai lable  t o  an on-line 

system (remote terminal or t i m e  sharing system) as an i n t r i n s i c  procedure 

f o r  in tegra t ing  d i f f e r e n t i a l  equations and see how ef fec t ive  o r  usefu l  it 

would be i n  t h i s  ro l e .  

F ina l ly , i t  would be of  i n t e r e s t  t o  compare the  use of t h i s  procedure 

with other methods of solving boundary value problems and i n t e g r a l  

equations e 
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